[1]宋柏生.关于一类三阶EPD方程的黎曼函数及其求法[J].东南大学学报(自然科学版),1983,13(3):71-78.[doi:10.3969/j.issn.1001-0505.1983.03.008]
 Song Bai-sheng.On the Riemann Function of a class of Third-Order Euler-Poisson-Darboux Equations and its Solutions[J].Journal of Southeast University (Natural Science Edition),1983,13(3):71-78.[doi:10.3969/j.issn.1001-0505.1983.03.008]
点击复制

关于一类三阶EPD方程的黎曼函数及其求法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
13
期数:
1983年第3期
页码:
71-78
栏目:
本刊信息
出版日期:
1983-09-20

文章信息/Info

Title:
On the Riemann Function of a class of Third-Order Euler-Poisson-Darboux Equations and its Solutions
作者:
宋柏生
undefined
Author(s):
Song Bai-sheng
关键词:
黎曼函数 二阶方程 双曲型方程 三阶 求法 唯一性 线性方程 定性研究 表达式 奇性
分类号:
+
DOI:
10.3969/j.issn.1001-0505.1983.03.008
摘要:
本文讨论一类三阶Euler—Poisson—Darboux方程方程属于全双曲型,因而我们从具体的方程出发验证了线性全双曲型方程的黎曼函数的存在性和唯一性。此外,不仅指出了黎曼函数的求法,而且得到了黎曼函数的表达式。这对三阶奇型方程的定性讨论提供了可能。
Abstract:
Iu this paper, a discussion is given of the Riemann function of a class of third-order EPD equations along with its solutions. The proof of the existence and uniqueness of the Riemann function of linear totally hyperbolic differential equations has proceeded from this particular type of equations, since these are of total hyperbolic type. Moreover, not only the solution of the Riemann function is indicated, but the expression of the Riemann function is obtained too, thus offering the possibility for a qualitative discussion of the third-order singular equation in terms of this expression.

相似文献/References:

[1]程崇庆.关于复模态情况下系统运动方程的解耦问题[J].东南大学学报(自然科学版),1983,13(4):98.[doi:10.3969/j.issn.1001-0505.1983.04.010]
 Cheng Chong-qing.The Decoupling Problem of Equation of Motion in the Case of Complex Modes[J].Journal of Southeast University (Natural Science Edition),1983,13(3):98.[doi:10.3969/j.issn.1001-0505.1983.04.010]

更新日期/Last Update: 2013-05-01