[1]张柔雷,佘颖禾.用变步长有限元法求解暂态温度场[J].东南大学学报(自然科学版),1984,14(2):114-123.[doi:10.3969/j.issn.1001-0505.1984.02.013]
 Zhang Roulei,Sheh Yingho.Finite Element Analysis of Transient Thermal Field Using Time Elements With Variable Time Steps[J].Journal of Southeast University (Natural Science Edition),1984,14(2):114-123.[doi:10.3969/j.issn.1001-0505.1984.02.013]
点击复制

用变步长有限元法求解暂态温度场()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
14
期数:
1984年第2期
页码:
114-123
栏目:
本刊信息
出版日期:
1984-06-20

文章信息/Info

Title:
Finite Element Analysis of Transient Thermal Field Using Time Elements With Variable Time Steps
作者:
张柔雷佘颖禾
undefined
Author(s):
Zhang Roulei Sheh Yingho
关键词:
暂态温度场 变步长 时域有限元法 大型汽轮发电机组 应力场 加权余量法 边界条件 程序框图 递推 时间域
分类号:
+
DOI:
10.3969/j.issn.1001-0505.1984.02.013
摘要:
本文提出采用加列金加权余量法对时间域作变步长2—4点有限元划分的计算方法,并应用于求解热传导问题中的暂态温度场问题,文中给出了此算法的程序框图以及典型实例的计算结果。最后,本文对大型汽轮发电机组参加调峰时,处于甩负苘阶段的汽机转子的暂态温度场,应力场用本文所给算法做了计算。
Abstract:
In this paper the Galerkin weighted functon method is abopted, for the finitc element analysis of the transient thermal fields using the 2 to 4-node time elements with variabe time steps. The flow chart of the computer program and the numerical results of some typical examples are given. To end this paper the transient thermal and stress field of a turbine rotor subjected unloading during discharging are solved by using the presented method

相似文献/References:

[1]张柔雷,佘颖禾.有限元法求解暂态温度场中阶跃现象的分析[J].东南大学学报(自然科学版),1983,13(3):102.[doi:10.3969/j.issn.1001-0505.1983.03.012]
 Zhag Rou-lei,and Sheh Ying-ho.The Analysis of the "Oscillation" in the Solution of Transient Thermal Field Problems by the Finite Element Method[J].Journal of Southeast University (Natural Science Edition),1983,13(2):102.[doi:10.3969/j.issn.1001-0505.1983.03.012]
[2]王侠,梁瑞宇,王青云,等.应用于助听器反馈抑制系统的变步长归一化子带自适应滤波算法[J].东南大学学报(自然科学版),2015,45(3):417.[doi:10.3969/j.issn.1001-0505.2015.03.001]
 Wang Xia,Liang Ruiyu,Wang Qingyun,et al.Variable step size normalized sub-band adaptive filter algorithm for acoustic feedback cancellation in hearing aids[J].Journal of Southeast University (Natural Science Edition),2015,45(2):417.[doi:10.3969/j.issn.1001-0505.2015.03.001]

更新日期/Last Update: 2013-05-01