[1]汤铭权.应用谐波分析法建立金属切削中驼峰曲线的数学模型[J].东南大学学报(自然科学版),1985,15(1):21-32.[doi:10.3969/j.issn.1001-0505.1985.01.002]
 Tang Mingchuan.An APPlication of Harmonic Analysis Method to Establish the Mathematical Model of Camelback Shaped Curve in Metal Cutting[J].Journal of Southeast University (Natural Science Edition),1985,15(1):21-32.[doi:10.3969/j.issn.1001-0505.1985.01.002]
点击复制

应用谐波分析法建立金属切削中驼峰曲线的数学模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
15
期数:
1985年第1期
页码:
21-32
栏目:
本刊信息
出版日期:
1985-03-20

文章信息/Info

Title:
An APPlication of Harmonic Analysis Method to Establish the Mathematical Model of Camelback Shaped Curve in Metal Cutting
作者:
汤铭权
南京工学院机械工程系 副教授
Author(s):
Tang Mingchuan
Department of Mechanic Engineering
关键词:
建立数学模型 驼峰曲线 谐波分析法 金属切削过程 刀具寿命 切削速度 程序框图 速度范围 基本原理 切削温度
分类号:
+
DOI:
10.3969/j.issn.1001-0505.1985.01.002
摘要:
必须指出,Taylor公式仅适用于较窄的切削速度范围。假如在较大的切削速度范围内进行试验时,所得V—T曲线并非经常是一单调函数关系,实际上V—T曲线有时呈驼峰状。根据谐波分析的基本原理,本文介绍了建立金属切削中驼峰曲线数学模型的方法。并以V—T关系与V—F_Z关系为例, 还介绍了应用此法的程序。此法同样也适用于建立金属切削中其它驼峰曲线的数学模型。由结果可知,计算值与试验值具有良好的一致性。最后,根据谐波分析方法给出了计算机的程序框图。
Abstract:
It is shown that the Taloy’s formula is effective only in a narrower range of cutting. If the test is made in a wide range of speed, the V-T curve obtained is not always in a monotonic functional relation, but sometimes becomes a camelback shaped form practically. On the basis of the principle of Harmonic analysis, this article presents a method for establishing the mathematical models of the camelback curve. Taking the V-T and the V-F_Z relationships for examples, procedures to apply this method is introduced. It is shown that the calculated values are well agreed with the experimental results. Finally the scheme of the computer programs based on harmonic analysis method is given.
更新日期/Last Update: 2013-05-01