[1]俞伦鹏,孙仁洽.矩形闭合空间内多孔介质中自然对流传热研究[J].东南大学学报(自然科学版),1987,17(3):94-106.[doi:10.3969/j.issn.1001-0505.1987.03.010]
 Yu Lunpeng (Bejing Research Institute for Metrology and Measurement)Sun Renqia (Jen-Hsia) (Department of Power Engineering).Natural Convective Heat Transfer inside the Porous Media in a Closed Rectangular Cavity[J].Journal of Southeast University (Natural Science Edition),1987,17(3):94-106.[doi:10.3969/j.issn.1001-0505.1987.03.010]
点击复制

矩形闭合空间内多孔介质中自然对流传热研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
17
期数:
1987年第3期
页码:
94-106
栏目:
本刊信息
出版日期:
1987-05-20

文章信息/Info

Title:
Natural Convective Heat Transfer inside the Porous Media in a Closed Rectangular Cavity
作者:
俞伦鹏孙仁洽
航天部第一计量测试研究所; 南京工学院动力工程系
Author(s):
Yu Lunpeng (Bejing Research Institute for Metrology and Measurement)Sun Renqia (Jen-Hsia) (Department of Power Engineering)
关键词:
多孔介质 闭合空间 自然对流传热 流场 温度场 数值计算
Keywords:
porous medium enclosure natural convective heal transfer flow field temperature distribution numerical analysis
分类号:
+
DOI:
10.3969/j.issn.1001-0505.1987.03.010
摘要:
对底面恒温加热顶面恒温冷却、其它壁面绝热的矩形闭合空间内多孔介质中的自然对流传热问题,简化为二维模型进行数值计算和分析,在Ra≤300范围内,揭示了流场、温度场和换热效果随瑞利数(Ra)变化的特性,证实了从导热向自然对流开始过渡的第一临界瑞利数 Ra_c=40,给出了努谢尔特数(Nu)、瑞利数(Ra)和形状比(A)之间关系的理论计算公式和曲线。
Abstract:
The natural convective heat transfer in fluid saturated porous media within a rectangular enclosure heated from below and cooled at the top,both isothermally,while the rest walls are adiabatic,is investigated for the 2-dimensional case,numerically.Rayleigh numbers range from 30 to 300. The indication of the onset of convective flow with the first critical Rayleigh number Ra_c at 40 is verified by the present analysis.The variations in flow field,temperature distribution and heat transfer with the increase of Rayleigh number are shown.Correlations of Nusselt number Nu with Rayleigh number Ra at various aspect ratios are given in order to facilitate the heat transfer calculations.

相似文献/References:

[1]李小川,施明恒,张东辉.非均匀多孔介质中导热过程[J].东南大学学报(自然科学版),2005,35(5):761.[doi:10.3969/j.issn.1001-0505.2005.05.023]
 Li Xiaochuan,Shi Mingheng,Zhang Donghui.Heat conduction process in non-uniform porous media[J].Journal of Southeast University (Natural Science Edition),2005,35(3):761.[doi:10.3969/j.issn.1001-0505.2005.05.023]
[2]陈振乾,施明恒,虞维平,等.竖直圆柱空间多孔介质中非牛顿流体自然对流[J].东南大学学报(自然科学版),1995,25(2):61.[doi:10.3969/j.issn.1001-0505.1995.02.011]
 Chen Zhenqian,Shi,Mingheng,et al.Natural Convection of Non-Newtonian Fluids inside Porous Media in a Vertical Cylindrical Caviyt[J].Journal of Southeast University (Natural Science Edition),1995,25(3):61.[doi:10.3969/j.issn.1001-0505.1995.02.011]
[3]蒋绿林,施明恒.多孔物料床中液体沸腾换热的研究[J].东南大学学报(自然科学版),1990,20(3):26.[doi:10.3969/j.issn.1001-0505.1990.03.005]
 lnvestigation on Boiling Heat Transfer in Liquid Saturated Porous Bed[J].Journal of Southeast University (Natural Science Edition),1990,20(3):26.[doi:10.3969/j.issn.1001-0505.1990.03.005]
[4]胡耀江,施明恒.多孔介质中注入蒸汽时热液区温度分布的计算[J].东南大学学报(自然科学版),1995,25(5):21.[doi:10.3969/j.issn.1001-0505.1995.05.004]
 Hu Yaojiang,Shi,Mingheng.Analysis on the Temperature Distribution in Hot Liquid Zone Preceding the Steam Condensation Front in Porous Media[J].Journal of Southeast University (Natural Science Edition),1995,25(3):21.[doi:10.3969/j.issn.1001-0505.1995.05.004]
[5]牟新竹,陈振乾.多尺度分形多孔介质气体有效扩散系数的数学模型[J].东南大学学报(自然科学版),2019,49(3):520.[doi:10.3969/j.issn.1001-0505.2019.03.017]
 Mou Xinzhu,Chen Zhenqian.Mathematical model for effective gas diffusion coefficient in multi-scale fractal porous media[J].Journal of Southeast University (Natural Science Edition),2019,49(3):520.[doi:10.3969/j.issn.1001-0505.2019.03.017]

更新日期/Last Update: 2013-05-01