[1]徐小乐,鲍顺光,沈永朝.模拟电路多频故障诊断的一种新方法[J].东南大学学报(自然科学版),1988,18(6):49-57.[doi:10.3969/j.issn.1001-0505.1988.06.007]
 Xu Xiaole Bao Shunguang Shen Yongchao (Department of Radio Engineering).A New Method of Multifrequency Fault Diagnosis for Analog Circuit[J].Journal of Southeast University (Natural Science Edition),1988,18(6):49-57.[doi:10.3969/j.issn.1001-0505.1988.06.007]
点击复制

模拟电路多频故障诊断的一种新方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
18
期数:
1988年第6期
页码:
49-57
栏目:
本刊信息
出版日期:
1988-11-20

文章信息/Info

Title:
A New Method of Multifrequency Fault Diagnosis for Analog Circuit
作者:
徐小乐鲍顺光沈永朝
南京工学院无线电工程系; 南京工学院无线电工程系
Author(s):
Xu Xiaole Bao Shunguang Shen Yongchao (Department of Radio Engineering)
关键词:
模拟电路 线性 多频 故障诊断 改进节点法 阻尼高斯-牛顿法
Keywords:
analog circuit fault diagnosis linear multifrequency modified nodal approach damping Gauss-Newton method
分类号:
+
DOI:
10.3969/j.issn.1001-0505.1988.06.007
摘要:
本文提出了模拟电路多频故障诊断的一种新方法。该法以电路的改进节点方程为基础,具有建立故障诊断方程容易,所建立的方程具有较低的非线性度及规则的雅可比矩阵的特点。根据诸特点采用了阻尼高斯-牛顿法求解。最后用几个实例对该方法进行了验证。
Abstract:
A new method of multifrequency fault diagnosis for analog circuit is presented in this paper. This method based on modified nodal approach is easy to set up the fault diagnosis equations and has lower degree of nonlinearity and regular Jacobi matrix form. According to the features of fault diagnosis equations, damping Gauss-Newton method is adopted to solve the equations. Several examples are given to verify the mothod.

相似文献/References:

[1]黄刚,何兆益,黄涛.沥青混合料动态蠕变黏弹性特性分析[J].东南大学学报(自然科学版),2012,42(6):1211.[doi:10.3969/j.issn.1001-0505.2012.06.034]
 Huang Gang,He Zhaoyi,Huang Tao.Analysis of viscoelastic characteristics of asphalt mixtures in dynamic creep test[J].Journal of Southeast University (Natural Science Edition),2012,42(6):1211.[doi:10.3969/j.issn.1001-0505.2012.06.034]
[2]宋柏生.线性Bianchi方程特征问题的流图解法[J].东南大学学报(自然科学版),1983,13(1):66.[doi:10.3969/j.issn.1001-0505.1983.01.007]
 Song Bai-sheng.Flow-Graph Solutions of the Characteristic Problems for the Linear Bianchi Equation[J].Journal of Southeast University (Natural Science Edition),1983,13(6):66.[doi:10.3969/j.issn.1001-0505.1983.01.007]

更新日期/Last Update: 2013-04-30