[1]管平.一类半导体方程瞬时解的渐近性[J].东南大学学报(自然科学版),1989,19(1):12-18.[doi:10.3969/j.issn.1001-0505.1989.01.002]
 Guan Ping(Department of Mathematics and Mechanics).On Asymptotic Behavior of Time-dependent Solutions to a Kind of Semiconductor Equations[J].Journal of Southeast University (Natural Science Edition),1989,19(1):12-18.[doi:10.3969/j.issn.1001-0505.1989.01.002]
点击复制

一类半导体方程瞬时解的渐近性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
19
期数:
1989年第1期
页码:
12-18
栏目:
本刊信息
出版日期:
1989-01-20

文章信息/Info

Title:
On Asymptotic Behavior of Time-dependent Solutions to a Kind of Semiconductor Equations
作者:
管平
东南大学数学力学系
Author(s):
Guan Ping(Department of Mathematics and Mechanics)
关键词:
非线性偏微分方程 渐近性 半导体
Keywords:
nonlinear partial differential equations asymptotic semiconductors
分类号:
+
DOI:
10.3969/j.issn.1001-0505.1989.01.002
摘要:
本文考虑在磁场影响下半导体方程的瞬时解和稳态解之间的关系:在一定条件下,半导体方程的瞬时解按某Banach空间的模收敛于其相应的稳态解,从而得出了瞬时解的一个渐近性结果。
Abstract:
This paper considers the relationship between the time-dependent solutions and the steady-state solutions of a kind of semiconductor equations under the influence of magnetic field, and obtains the result that the time -dependent solutions of a semiconductor equation converge to corresponding steady-state solutions in the sense of some norm in Banach space under certain conditions. An asymptotic behavior of the time-dependent solutions is thus obtained.

相似文献/References:

[1]王开永,林金官.带常利率相依风险模型的有限时破产概率[J].东南大学学报(自然科学版),2012,42(6):1243.[doi:10.3969/j.issn.1001-0505.2012.06.040]
 Wang Kaiyong,Lin Jinguan.Finite-time ruin probability of dependent risk model with constant interest rate[J].Journal of Southeast University (Natural Science Edition),2012,42(1):1243.[doi:10.3969/j.issn.1001-0505.2012.06.040]
[2]王元明,裘哲勇,管平.磁敏半导体方程解的衰减估计[J].东南大学学报(自然科学版),1992,22(6):30.[doi:10.3969/j.issn.1001-0505.1992.06.006]
 Wang Yuanming,Qiu Zheyong,Guan Ping.The Decay Estimate of the Solutions to the Magneto-Semiconductor Equations[J].Journal of Southeast University (Natural Science Edition),1992,22(1):30.[doi:10.3969/j.issn.1001-0505.1992.06.006]
[3]黄骏,陈才生.一类非线性反应扩散方程整体解的渐近性态[J].东南大学学报(自然科学版),1995,25(4):73.[doi:10.3969/j.issn.1001-0505.1995.04.013]
 Huang Jun,Chen Caisheng,Chen Caisheng.Asymptotic Behavior of Global Solutions of a Nonlinear Reaction-Diffusion Equation[J].Journal of Southeast University (Natural Science Edition),1995,25(1):73.[doi:10.3969/j.issn.1001-0505.1995.04.013]

更新日期/Last Update: 2013-04-30