[1]李荆垠,徐南荣.由时变ARMA模型描述的一类非平稳时间序列的特性[J].东南大学学报(自然科学版),1989,19(2):75-82.[doi:10.3969/j.issn.1001-0505.1989.02.011]
 Li Jingyin Xu Nanrong (College of Management).The Characteristics of Nonstationary Time Series Described by Time-varying ARMA Models[J].Journal of Southeast University (Natural Science Edition),1989,19(2):75-82.[doi:10.3969/j.issn.1001-0505.1989.02.011]
点击复制

由时变ARMA模型描述的一类非平稳时间序列的特性()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
19
期数:
1989年第2期
页码:
75-82
栏目:
本刊信息
出版日期:
1989-03-20

文章信息/Info

Title:
The Characteristics of Nonstationary Time Series Described by Time-varying ARMA Models
作者:
李荆垠徐南荣
东南大学管理学院; 东南大学管理学院
Author(s):
Li Jingyin Xu Nanrong (College of Management)
关键词:
时间序列分析 时变 ARMA(自回归滑动)模型
Keywords:
time series analysis time varying ARMA (autoregressive moving average) models
分类号:
+
DOI:
10.3969/j.issn.1001-0505.1989.02.011
摘要:
本文从线性系统和时间序列的关系出发,分析了由一般线性时变模型,特别是时变系数的ARMA模型所描述的非平稳时间序列的特性。
Abstract:
In this paper, the relation between the linear systems and time series is discussed, and the properties of nonstationary time series described by time-varying linear models, especially by ARM A models with time-varying coefficients, are investigated.

相似文献/References:

[1]常娟,薛星美.序Hilbert空间中的时脉冲中立型泛函微分方程[J].东南大学学报(自然科学版),2005,35(4):654.[doi:10.3969/j.issn.1001-0505.2005.04.035]
 Chang Juan,Xue Xingmei.Impulsive neutral functional differential equations with variable times in ordered Hilbert spaces[J].Journal of Southeast University (Natural Science Edition),2005,35(2):654.[doi:10.3969/j.issn.1001-0505.2005.04.035]
[2]曾鹏,黄仁.多变量时序模型的典则型研究[J].东南大学学报(自然科学版),1995,25(5):107.[doi:10.3969/j.issn.1001-0505.1995.05.019]
 Zeng Peng,Huang,Ren.The Normalized Form Study of Multi-Variable Time Seies Model[J].Journal of Southeast University (Natural Science Edition),1995,25(2):107.[doi:10.3969/j.issn.1001-0505.1995.05.019]
[3]曹忻,盛昭瀚,徐南荣.非平稳时间序列的线性预测[J].东南大学学报(自然科学版),1989,19(6):86.[doi:10.3969/j.issn.1001-0505.1989.06.012]
 Cao Xin Sheng Zhaohan Xu Nanrong(College of Management).Linear Prediction of Nonstationary Time Series[J].Journal of Southeast University (Natural Science Edition),1989,19(2):86.[doi:10.3969/j.issn.1001-0505.1989.06.012]
[4]朱军华,余岭.基于时间序列分析与高阶统计矩的结构损伤检测[J].东南大学学报(自然科学版),2012,42(1):137.[doi:10.3969/j.issn.1001-0505.2012.01.026]
 Zhu Junhua,Yu Ling.Damage detection based on time series analysis and higher statistical moments[J].Journal of Southeast University (Natural Science Edition),2012,42(2):137.[doi:10.3969/j.issn.1001-0505.2012.01.026]
[5]吴少敏,万德钧,黄仁.非线性时间序列的结构辨识[J].东南大学学报(自然科学版),1995,25(2):1.[doi:10.3969/j.issn.1001-0505.1995.02.001]
 Wu Shaomin,Wan,Dejun,et al.The Detective Identification of Nonlinear Time Series Models[J].Journal of Southeast University (Natural Science Edition),1995,25(2):1.[doi:10.3969/j.issn.1001-0505.1995.02.001]
[6]吴少敏,万德钧,黄仁.指数自回归模型的辨识的研究[J].东南大学学报(自然科学版),1994,24(4):96.[doi:10.3969/j.issn.1001-0505.1994.04.017]
 Wu Shaomin,Wan Dejun,et al.On Identification of Exponential Autoregressive Model[J].Journal of Southeast University (Natural Science Edition),1994,24(2):96.[doi:10.3969/j.issn.1001-0505.1994.04.017]

更新日期/Last Update: 2013-04-30