[1]彭龙.高精度有限元概率算法[J].东南大学学报(自然科学版),1990,20(4):119-126.[doi:10.3969/j.issn.1001-0505.1990.04.017]
 Peng Long.Probability Computing Method of Finite Element with High Accuracy[J].Journal of Southeast University (Natural Science Edition),1990,20(4):119-126.[doi:10.3969/j.issn.1001-0505.1990.04.017]
点击复制

高精度有限元概率算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
20
期数:
1990年第4期
页码:
119-126
栏目:
本刊信息
出版日期:
1990-07-20

文章信息/Info

Title:
Probability Computing Method of Finite Element with High Accuracy
作者:
彭龙
东南大学数学力学系
Author(s):
Peng Long
Department of Mathematics and Mechanics
关键词:
有限元 数学期望 随机游动/概率算法
分类号:
+
DOI:
10.3969/j.issn.1001-0505.1990.04.017
摘要:
本文构造了一种高精度有限元概率算法,使用该方法在不增加剖分节点(即与线性元剖分节点相同)的情况下,只要改变每次游动的概率即可达到高次元的超收敛精度.

相似文献/References:

[1]徐欧,卢爱红,徐金平,等.含单轴媒质和多层金属栅的多层介质结构电磁散射分析[J].东南大学学报(自然科学版),2006,36(1):25.[doi:10.3969/j.issn.1001-0505.2006.01.005]
 Xu Ou,Lu Aihong,Xu Jinping,et al.Analysis of EM scattering by multilayer dielectric structures including uniaxial medium and multilayer metal gratings[J].Journal of Southeast University (Natural Science Edition),2006,36(4):25.[doi:10.3969/j.issn.1001-0505.2006.01.005]
[2]王果,倪中华,倪晓宇,等.食管支架径向支撑性能[J].东南大学学报(自然科学版),2011,41(5):987.[doi:10.3969/j.issn.1001-0505.2011.05.018]
 Wang Guo,Ni Zhonghua,Ni Xiaoyu,et al.Radial support properties of esophagus stent[J].Journal of Southeast University (Natural Science Edition),2011,41(4):987.[doi:10.3969/j.issn.1001-0505.2011.05.018]
[3]张思,高翔.利用计算结果与模态参数修正结构动力模型[J].东南大学学报(自然科学版),1988,18(2):71.[doi:10.3969/j.issn.1001-0505.1988.02.009]
 Zhang Si Gao Xiang (Department of Mechanical Engineering).Structural Modification of Dynamic Model Using the Result from Computation and the Modal Parameters[J].Journal of Southeast University (Natural Science Edition),1988,18(4):71.[doi:10.3969/j.issn.1001-0505.1988.02.009]
[4]李昶,邓学钧.钢箱梁桥桥面铺装层动态响应分析[J].东南大学学报(自然科学版),2004,34(2):253.[doi:10.3969/j.issn.1001-0505.2004.02.026]
 Li Chang,Deng Xuejun.Dynamic response of deck overlays of steel box under live load[J].Journal of Southeast University (Natural Science Edition),2004,34(4):253.[doi:10.3969/j.issn.1001-0505.2004.02.026]
[5]彭龙,朱起定.准Green函数Galerkin逼近改进的权范数方法[J].东南大学学报(自然科学版),1994,24(6):93.[doi:10.3969/j.issn.1001-0505.1994.06.017]
 Peng Long,Zhu Qiding.Improved Weighted Norm Method for Galerkin Approximation of Green’s Function[J].Journal of Southeast University (Natural Science Edition),1994,24(4):93.[doi:10.3969/j.issn.1001-0505.1994.06.017]
[6]韦博成.非线性回归模型残差的近似分析[J].东南大学学报(自然科学版),1984,14(3):115.[doi:10.3969/j.issn.1001-0505.1984.03.012]
 Wei Bocheng.An Approximate Residual Analysis of the Nonlinear Regression Model[J].Journal of Southeast University (Natural Science Edition),1984,14(4):115.[doi:10.3969/j.issn.1001-0505.1984.03.012]
[7]彭龙,王金亮.两种提高有限元概率算法精度的方法[J].东南大学学报(自然科学版),1992,22(1):82.[doi:10.3969/j.issn.1001-0505.1992.01.014]
 Peng Long,Wang Jinliang,Wang Jinliang.Two Kinds of Method with High Accuracy for Finite Element Probability Computing Method[J].Journal of Southeast University (Natural Science Edition),1992,22(4):82.[doi:10.3969/j.issn.1001-0505.1992.01.014]

更新日期/Last Update: 2013-04-21