[1]叶桦,章国宝,陈维南.基于小波变换的纹理图像分割[J].东南大学学报(自然科学版),1999,29(1):44-48.[doi:10.3969/j.issn.1001-0505.1999.01.009]
 Ye Hua,Zhang Guobao,Chen Weinan.Texture Segmentation Using Wavelet Filters[J].Journal of Southeast University (Natural Science Edition),1999,29(1):44-48.[doi:10.3969/j.issn.1001-0505.1999.01.009]
点击复制

基于小波变换的纹理图像分割()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
29
期数:
1999年第1期
页码:
44-48
栏目:
计算机科学与工程
出版日期:
1999-01-20

文章信息/Info

Title:
Texture Segmentation Using Wavelet Filters
作者:
叶桦 章国宝 陈维南
东南大学自动化研究所, 南京 210096
Author(s):
Ye Hua Zhang Guobao Chen Weinan
Research Institute of Automation, Southeast University, Nanging 210096
关键词:
小波 图像分割 图像处理
Keywords:
wavelet image segmentation image processing
分类号:
TP391.4
DOI:
10.3969/j.issn.1001-0505.1999.01.009
摘要:
Mallat非正交小波变换通常用于光滑图像的边缘提取,本文将其改进后,推广到图像纹理特征的提取和纹理图像的分割,取得了良好的效果. 基于小波变换的纹理图像分割的算法中,小波变换尺度数的选取和纹理聚类数的确定是其难点. 对此,本文作了详细的讨论,提出了一些独特、有效的解决方法.
Abstract:
Gradient wavelet transform is usually used to extract edges in an image. It is improved in order to extract image features, which are used to do texture segmentation in this paper. Experiments show that the algorithmis performed well. It is necessary but difficult to give the 010 number of wavelet scales and the number of clusters. We study the problem carefully and give some special and effective approaches to decide the two numbers.

参考文献/References:

[1] Jain A K,Farrokhnia F.Unsupervised texture segmentation using Gabor filters.Pattern Recognition,1991,24(12):1167~1186
[2] Porat M,Zeevi Y.Localized texture processing in vision:analysis and synthesis in Gaborian space.IEEE Trans on Biomedical Engineering,1989,36(1):115~129
[3] Reed T R,Wechsler H.Segmentation of textured images and gestalt organization using spatial/spatial-frequency representations.IEEE T-PAMI,1990,12(1):1~12
[4] Laine A,Fan J.Texture discrimination and classification by wavelet packets.IEEE Trans on Pattern Analysis and Machine Intelligence,1993,15(11):1186~1191
[5] Porter R,Canagarajah N.A robust clustering schema for image segmentation using wavelets.IEEE Trans on Image Processing,1996,5(4):662~665
[6] Dubes R C.How many clusters are best? A experiment.Pattern Recognition,1987,20:645~663
[7] Mallat S,Zhong S.Characterization of signals from multiscale edges.IEEE T-PAMI,1992,14(7):710~732

相似文献/References:

[1]葛云,章东.活体细胞图像斑点的自动提取和跟踪方法[J].东南大学学报(自然科学版),2009,39(3):464.[doi:10.3969/j.issn.1001-0505.2009.03.009]
 Ge Yun,Zhang Dong.Automated methods for particle tracking of the intracellular transport of clathrin-coated pits and vesicles[J].Journal of Southeast University (Natural Science Edition),2009,39(1):464.[doi:10.3969/j.issn.1001-0505.2009.03.009]
[2]周光泉,姜璐,罗立民,等.基于内容的彩色细胞图像检索[J].东南大学学报(自然科学版),2004,34(5):669.[doi:10.3969/j.issn.1001-0505.2004.05.024]
 Zhou Guangquan,Jiang Lu,Luo Limin,et al.Content based color cell image retrieval[J].Journal of Southeast University (Natural Science Edition),2004,34(1):669.[doi:10.3969/j.issn.1001-0505.2004.05.024]
[3]曹兰英,夏良正,张昆辉.基于小波域MRF模型的SAR图像分割[J].东南大学学报(自然科学版),2004,34(6):847.[doi:10.3969/j.issn.1001-0505.2004.06.029]
 Cao Lanying,Xia Liangzheng,Zhang Kunhui.SAR image segmentation using MRF model in wavelet domain[J].Journal of Southeast University (Natural Science Edition),2004,34(1):847.[doi:10.3969/j.issn.1001-0505.2004.06.029]
[4]吴新根,鲍旭东,傅瑶,等.一种基于空间域和频谱域特征的图象分割方法[J].东南大学学报(自然科学版),1998,28(4):33.[doi:10.3969/j.issn.1001-0505.1998.04.007]
 Wu Xingen,Bao Xudong,Luo Limin.An Image Segmentation Algorithm Based on Space Domain and Spectrum Domain Features[J].Journal of Southeast University (Natural Science Edition),1998,28(1):33.[doi:10.3969/j.issn.1001-0505.1998.04.007]
[5]李新德,张晓,朱博.基于立体视觉的一般物体识别方法[J].东南大学学报(自然科学版),2013,43(4):711.[doi:10.3969/j.issn.1001-0505.2013.04.008]
 Li Xinde,Zhang Xiao,Zhu Bo.Generic object recognition method based on stereo vision[J].Journal of Southeast University (Natural Science Edition),2013,43(1):711.[doi:10.3969/j.issn.1001-0505.2013.04.008]
[6]周正东,李剑波,辛润超,等.基于带孔U-net神经网络的肺癌危及器官并行分割方法[J].东南大学学报(自然科学版),2019,49(2):231.[doi:10.3969/j.issn.1001-0505.2019.02.005]
 Zhou Zhengdong,Li Jianbo,Xin Runchao,et al.Parallel segmentation method for organs at risk in lung cancer based on dilated U-net neural network[J].Journal of Southeast University (Natural Science Edition),2019,49(1):231.[doi:10.3969/j.issn.1001-0505.2019.02.005]

备注/Memo

备注/Memo:
第一作者:男,1963年生,博士,副教授.
更新日期/Last Update: 1999-01-20