[1]王桥,吴乐南.完全可平移的小波基[J].东南大学学报(自然科学版),1999,29(4):43-47.[doi:10.3969/j.issn.1001-0505.1999.04.010]
 Wang Qiao,Wu Lenan.Completely Shiftable Wavelet Bases[J].Journal of Southeast University (Natural Science Edition),1999,29(4):43-47.[doi:10.3969/j.issn.1001-0505.1999.04.010]
点击复制

完全可平移的小波基()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
29
期数:
1999年第4期
页码:
43-47
栏目:
信息与通信工程
出版日期:
1999-07-20

文章信息/Info

Title:
Completely Shiftable Wavelet Bases
作者:
王桥 吴乐南
东南大学无线电工程系, 南京 210096
Author(s):
Wang Qiao Wu Lenan
Department of Radio Engineering, Southeast University,Nanjing 210096
关键词:
小波基 平移不变性 插值算法
Keywords:
shiftable wavelet bases shiftability interpolation algorithm
分类号:
TN911;G201
DOI:
10.3969/j.issn.1001-0505.1999.04.010
摘要:
构造出一族完全可平移的实正交小波基,以此否定了只有Shannon小波才是完全可平移的这个观点.讨论了该族小波的时频局部性,并且实现了用信号在单个频道内的小波系数内插平移信号小波系数的Simoncelli型插值算法.依据酉表示论和相应的谱测度分析,本文的方法可以统一处理更一般的平移不变性、伸缩不变性等问题.
Abstract:
We construct a group of completely shiftablereal orthonormal wavelet bases,which disaffirms that only Shannon’s wavelet is shiftable. The time-frequency localization of these wavelets is discussed and the shiftability interpolation algorithm for the shifting signal is proposed from which one can obtain wavelet coefficients only depending information in nearly channel. The method proposed can be generalized to solve arbitrary shiftability problem by using spectrum measure and related unitary representation theory.

参考文献/References:

[1] Daubechies I.Wavelet and other phase localization method.Zürich:ICM,1994,57~74
[2] Mallat S.Zero-crossings of a wavelet transform.IEEE Trans Information Theory,1991,37:1019~1033
[3] Simoncelli E P,Freeman W T,Adelson E H,et al.Shiftable multiscale transforms.IEEE Trans,Information Theory,1992,38(2):587~606
[4] Marco S D,Weiss J.Improved transient signal detection using a wavelet-based detector with an extended translation-invariant wavelet transform.IEEE Tran,Signal Processing,1997,45(4):841~849
[5] Liang J,Parks T W.A translation-invariant wavelet representation algorithm with applications.IEEE Trans SP,1996,42(2):225~232
[6] Battle G.How to recover Euclidean invariance from an ondelette cluster expression.Ann Inst Henri Poincaré.1988,49:403~413
[7] 王桥.小波基的平移不变性破缺与相异时间模型的量子演化:[学位论文]武汉:武汉大学,1997
[8] Meyer Y.Ondelettes et operateurs (I).Paris:Hermann,1992
[9] Wang Q.A simple model of Aharonov-Berry’s superoscillations.J Phys A,1996,29(9):2257~2258
[10] Coifman R R,Wickerhauser M V.Entroy-based algorithms for best basis selection.IEEE Trans Information Theory,1993,38:713~718
[11] Wang Q.Nonexistence of compactly supported wavelet bases with non-integer scale.Prog Nat Sci,1997,7(4):389~391

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(69772025)和中国博士后科学基金资助项目.
第一作者:男, 1966年生, 博士后.
更新日期/Last Update: 1999-07-20