[1]那斯尔江·吐尔逊吴金杨廉峰刘其贵夏君魏同立.半导体器件流体动力学模型研究[J].东南大学学报(自然科学版),1999,29(5):52-56.[doi:10.3969/j.issn.1001-0505.1999.05.010]
 Nasirjan Tursun,Wu Jin,Yang Lianfeng,et al.Study of Hydrodynamic Model for Semiconductor Devices[J].Journal of Southeast University (Natural Science Edition),1999,29(5):52-56.[doi:10.3969/j.issn.1001-0505.1999.05.010]
点击复制

半导体器件流体动力学模型研究()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
29
期数:
1999年第5期
页码:
52-56
栏目:
电子科学与工程
出版日期:
1999-09-20

文章信息/Info

Title:
Study of Hydrodynamic Model for Semiconductor Devices
作者:
那斯尔江·吐尔逊吴金杨廉峰刘其贵夏君魏同立
东南大学微电子中心, 南京 210096
Author(s):
Nasirjan Tursun Wu Jin Yang Lianfeng Liu Qigui Xia Jun Wei Tongli
Microelectronics Center, Southeast University, Nanjing 210096
关键词:
亚微米半导体器件 流体动力学模型 弛豫时间
Keywords:
submicron semiconductor device hydrodynamic model relaxation time
分类号:
TN302
DOI:
10.3969/j.issn.1001-0505.1999.05.010
摘要:
主要讨论了亚微米半导体器件模拟的流体动力学模型方程的建立过程.流体动力学模型由玻尔兹曼传输模型方程的矩推导而来, 对玻尔兹曼传输模型采用不同的物理假设和数学近似, 可以得到不同形式的流体动力学模型.同时, 对各种不同形式的流体动力学模型的相互转换关系进行了系统分析, 给出了半导体器件各种输运模型的适用范围等特性, 为通用亚微米半导体器件模拟软件的模型选择提供了参考依据.
Abstract:
This paper presents the building procedures of hydrodynamic model for submicron semiconductor device simulation. The derivations of this model are based on the moments of Boltzmann transport equation. With different physical assumptions and mathematical approximation, the actual forms of hydrodynamic model are various. This paper also analyzes the relationships between the hydrodynamic models with different forms and gives out the application features of different device transport models. Thus it is advisable to choose the device model for general submicron semiconductor device simulation according the conclusion of this paper. 

参考文献/References:

[1] Kjell B.Transport coefficients for electrons in two valley semiconductors.IEEE Trans Elec Dev,1970,17(1):38~47
[2] Andreas B,Gerd S.Extended moment equations for electron transport in semiconductor submicron structures.J Appl Phys,1988,64(5):2447~2455
[3] Tang Tingwei,Sridhar R,Joonwoo N.An improved hydrodynamic transport model for silicon.IEEE Trans Elec Dev,1993,40(8):1469~1477
[4] Baccarani G,Wordeman M R.An investigation of steady-state velocity overshoot in silicon.Solid-State Electronics,1985,28(4):407~416
[5] Mei Kei Ieong,Tang Tingwei.Influence of hydrodynamic model on the prediction of submicrometer devices characteristics.IEEE Trans on Electronic Devices,1997,44(12):2242~2252
[6] Sridhar R,Tang Tingwei,Comparison of semiconductor transport models using a Monte-Carlo consistency test.IEEE Trans Elec Dev,1994,41(1):76~83
[7] Forghieri A,Guerrieri R,Ciampolini P,et al.A new discretization strategy of the semiconductor equations comprising momentum and energy balance.IEEE Trans on CAD,1988,7(2):231~242
[8] Woolard D L,Tian H,Trew R J,et al.Hydrodynamic electron transport model:nonparabolic corrections to the streaming terms.Phy Rev B,1991,126(6):2002~2014
[9] Apanovich Y,Lyumkis E,Polsky B,et al.Steady-state and transient analysis of submicron devices using energy balance and simplified hydrodynamic models.IEEE Trans on CAD,1994,13(6):702~711
[10] 叶良修.小尺寸半导体器件的蒙特卡罗模拟.北京:科学出版社,1997.22~42
[11] Woolard D L,Stroscio M A,Littlejohn M A,et al.A new non-parabolic hydrodynamic model with quantum corrections,computational electronics—semiconductor transport and devices simulation.Boston:Published by Kluwer Academic Press,1991.59~62

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(69806002)和江苏省自然科学基金(BK9799)资助项目.
第一作者:男, 1973年生, 硕士研究生.
更新日期/Last Update: 1999-09-20