[1]卢殿臣,田立新.低模态下弱阻尼KdV方程约化形式的数值分析[J].东南大学学报(自然科学版),1999,29(6):75-80.[doi:10.3969/j.issn.1001-0505.1999.06.017]
 Lu Dianchen,Tian Lixin.Numerical Analysis under Lower Model in Weakly Damped Forced KdV Equation[J].Journal of Southeast University (Natural Science Edition),1999,29(6):75-80.[doi:10.3969/j.issn.1001-0505.1999.06.017]
点击复制

低模态下弱阻尼KdV方程约化形式的数值分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
29
期数:
1999年第6期
页码:
75-80
栏目:
数学、物理学、力学
出版日期:
2000-11-20

文章信息/Info

Title:
Numerical Analysis under Lower Model in Weakly Damped Forced KdV Equation
作者:
卢殿臣 田立新
江苏理工大学数理系,镇江212013
Author(s):
Lu Dianchen Tian Lixin
Department of Mathematics and Physics, Jiangsu University of Science and Technology, Zhenjiang 212013
关键词:
周期边界条件 偏微分方程 动力系统 孤立波/近似惯性流形
Keywords:
periodic boundary conditions partial differential equation dynamical systems soliton/approximate inertial manifold
分类号:
O157.29
DOI:
10.3969/j.issn.1001-0505.1999.06.017
摘要:
给出低模态下弱阻尼KdV方程约化形式的近似惯性流形,并在五模态下作数值分析,有关数值分析结果与非线性谱分析结果相类似.
Abstract:
In this paper the authos result out the approximate inertial manifold of induce from for lower models in weakly damped forced KdV equation and make numerical analysis. The numerical results for five models are as same as that of nonlinear spectral analysis.

参考文献/References:

[1] Temam R.Infinite dimensional systems in mechanics and physics.Berlin:Springer,1988
[2] Constantin P,Foias C,Nicolaenko B,et al.Integral manifolds and inertial manifolds for dissipative partial differential equations.Berlin:Springer,1988
[3] Cross M C,Hohenberg P C.Pattern formation of equilibrum.Rev Mod Phy,1993,65:851~1121
[4] Tian Lixin,Xu Zhenyuan.The research of longtime dynamics behavior in weakly damped KdV equation.Appl Math Mech,1997,10:1021~1028
[5] Ercolani N M,McLaughin D W,Roitner H.Attractors and transients for a perturbed periodic KdV equations:a nonlinear spectral analysis.J Nonlinear Science,1993,(3):477~579

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(19601020),江苏省自然科学基金(BK97119),江苏省青年科技基金(BQ98023)资助.
第一作者:男,1960年生,学士,副教授.
更新日期/Last Update: 1999-11-20