[1]郭小明.Drucker公设下的凸规划问题[J].东南大学学报(自然科学版),2000,30(4):67-71.[doi:10.3969/j.issn.1001-0505.2000.04.013]
 Guo Xiaoming.Convex Programming Subject to Drucker’s Postulate[J].Journal of Southeast University (Natural Science Edition),2000,30(4):67-71.[doi:10.3969/j.issn.1001-0505.2000.04.013]
点击复制

Drucker公设下的凸规划问题()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
30
期数:
2000年第4期
页码:
67-71
栏目:
数学、物理学、力学
出版日期:
2000-07-20

文章信息/Info

Title:
Convex Programming Subject to Drucker’s Postulate
作者:
郭小明
东南大学土木工程学院, 南京 210096
Author(s):
Guo Xiaoming
College of Civil Engineering, Southeast University, Nanjing 210096
关键词:
塑性 Drucker公设 凸规划 存在性 收敛性
Keywords:
plasticity Drucker’s postulate convex programming existence convergence
分类号:
O344
DOI:
10.3969/j.issn.1001-0505.2000.04.013
摘要:
在材料服从Drucker公设下, 将弹塑性边值问题的等价泛函表达式, 化为一个具有线性和凸性性质的凸规划问题.文中还严格证明了这一问题解的存在性及有限元解的收敛性.
Abstract:
The equivalent functional form of the elastoplastic boundary value problems is transformed to a convex programming problem for the materials in which the Drucker’s postulate is satisfied. The new extremal form has linear and convex character. The existence and the convergence of finite element solutions are also proved.

参考文献/References:

[1] Guo Xiaoming,She Yinghe.Variational inequality in elastoplastic problems.J Southeast Univ,1992,8(1):99~106
[2] 曲圣年,殷有泉.塑性力学的Drucker公设和Ильюшин公设.力学学报,1981(5):465~472
[3] Palmer A C,Maier G,Drucker D C.Normality relations and convexity of yield surfaces for unstable materials or structural elements.J Appl Mech,1967 (34):464~470
[4] Jiang L S.On an elastic-plastic problems.J Differential Eq,1984,51(1):97~115
[5] 程耿东.工程优化设计基础.北京:水利电力出版社,1984:7~12
[6] 姜礼尚.有限元方法及其理论基础.北京:人民教育出版社,1979:159~219
[7] Lions J,Stampaechia G.Variational inequality.Comm Pure Appl Math,1967(20):493~519

备注/Memo

备注/Memo:
第一作者:男, 1965年生, 硕士, 副教授.
更新日期/Last Update: 2000-07-20