[1]胡宏.Lucas组合数模P[J].东南大学学报(自然科学版),2000,30(6):119-122.[doi:10.3969/j.issn.1001-0505.2000.06.025]
 Hu Hong.Lucas Triangles Modulo p[J].Journal of Southeast University (Natural Science Edition),2000,30(6):119-122.[doi:10.3969/j.issn.1001-0505.2000.06.025]
点击复制

Lucas组合数模P()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
30
期数:
2000年第6期
页码:
119-122
栏目:
数学、物理学、力学
出版日期:
2000-11-20

文章信息/Info

Title:
Lucas Triangles Modulo p
作者:
胡宏
淮阴师范学院数学系,淮阴 223001
Author(s):
Hu Hong
Department of Mathematics, Huaiyin Normal College, Huaiyin 223001
关键词:
Lucas组合数 本原因子 同余式
Keywords:
Lucas triangle modulo primitive factor congruence expression
分类号:
O157.1;O221.7
DOI:
10.3969/j.issn.1001-0505.2000.06.025
摘要:
本文给出Lucas组合数[n
Abstract:
We define the Lucas triangle [n

参考文献/References:

[1] Knuth D E,Wilf H S.The power of a prime that divides a generalized binomial coefficient.J Reine Angew Math,1989,396:212~219
[2] Wells D.The Fibonacci and Lucas triangles modulo 2.Fibonacci Quart,1994,32(2):111~123
[3] Wells D.Residue counts modulo three for the Fibonacci triangle.In:Applications of Fibonacci Numbers 6.Dordrecht:Kluwer,1996.521~526
[4] Wilson B.The Fibonacci triangle modulo p.Fibonacci Quart,1998,316:194~203
[5] Kimball W A,Well W A.A congruence for Fibonomial coefficients Modulo p3.Fibonacci Quart,1995,35(2):290~297

备注/Memo

备注/Memo:
基金项目:国家自然科学基金资助项目(19971038).
第一作者:女, 1967年生, 讲师.
更新日期/Last Update: 2000-11-20