[1]吉根林,孙志挥.一种基于可信度最优的数量关联规则挖掘算法[J].东南大学学报(自然科学版),2001,31(2):31-34.[doi:10.3969/j.issn.1001-0505.2001.02.008]
 Ji Genlin,Sun Zhihui.An Algorithm for Mining Optimized Confidence Quantitative Association Rules[J].Journal of Southeast University (Natural Science Edition),2001,31(2):31-34.[doi:10.3969/j.issn.1001-0505.2001.02.008]
点击复制

一种基于可信度最优的数量关联规则挖掘算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
31
期数:
2001年第2期
页码:
31-34
栏目:
计算机科学与工程
出版日期:
2001-03-20

文章信息/Info

Title:
An Algorithm for Mining Optimized Confidence Quantitative Association Rules
作者:
吉根林12 孙志挥2
1 南京师范大学计算机科学系,南京 210097; 2 东南大学计算机科学与工程系,南京 210096
Author(s):
Ji Genlin12 Sun Zhihui2
1 Department of Computer Science, Nanjing Normal University, Nanjing 210097; 2 Department of Computer Science and Engineering, Southeast University, Nanjing 210096)
关键词:
数量关联规则 数据挖掘 连续属性离散化
Keywords:
quantitative association rules data mining discretization for continuous attribute
分类号:
TP311
DOI:
10.3969/j.issn.1001-0505.2001.02.008
摘要:
研究了数量关联规则挖掘过程中的连续属性离散化问题,描述了连续属性离散化方法,包括连续属性区间划分算法和数据库样本大小的确定,提出了基于可信度最优的数量关联规则挖掘算法.该算法首先利用等深度划分算法对连续属性进行离散化,然后利用凸包处理技术提取强规则中可信度最高的数量关联区间,它对于数量关联规则的优化有着重要的应用价值.应用该算法对股票行情进行了数量关联分析,提取股票涨跌与股票价格之间可信度最高的关联规则.实验表明该算法是非常有效的.
Abstract:
This paper discusses the problem of discretization for continuous attributes and describes a method for discretization in the processing of mining quantitative association rules, including quantitative ranges partitioning and sampling to a huge database. An algorithm for mining optimized confidence quantitative association rules is presented. In the algorithm, the equi-depth partitioning is used to discrete for continuous attributes and a technique of handing convex hulls is used to compute optimized confidence quantitative association ranges. Given a huge database, we address the problem of finding association rules for numeric attributes, such as (A∈[v1,v2])C, in which C is boolean attribute. Our goal is to realize a system that finds an appropriate range automatically. We use the algorithms to analyse the buying and selling of stocks, finding association rules between stock price and fluctuation of price. The experiment states clearly that the algorithms are correct.

参考文献/References:

[1] Fayyad U M,Piatetsky-Shapiro G,Smyth P.Advance in knowledge discover and data mining.California:AAAI Press,The MIT Press,1996.1~25
[2] Srikant R,Agrawal R.Mining quantitative association rules in large relational table.In:Carey M,Schneider D,eds.Proceedings of the ACMSIGMOD Conference on Management of Data.New York:ACM Press,1996.1~12
[3] Fukuda T,Morimoto Y,Morishita S,et al.Mining optimized association rules for numeric attributes.In:Mendelzon A,Ozsoyoglu Z,eds.Proceeding of the 15th ACM Symposium on Principles of Database Systems.New York:ACM Press,1996.182~191
[4] Fukuda T,Morimoto Y,Morishita S,et al.Data mining using two-dimensional optimized association rules.In:Carey M,Schneider D,eds.Proceedings of the ACMSIGMOD Conference on Management of Data.New York:ACM Press,1996.13~24
[5] Robert Groth.Data mining:building competitive advantage.New Jersey:Prentice Hall PTR,2000.28~30
[6] 苑森淼,程晓青.数量关联规则发现中的聚类方法研究.计算机学报,2000,23(8):866~871

相似文献/References:

[1]吉根林,凌霄汉,杨明.一种基于集成学习的分布式聚类算法[J].东南大学学报(自然科学版),2007,37(4):585.[doi:10.3969/j.issn.1001-0505.2007.04.008]
 Ji Genlin,Ling Xiaohan,Yang Ming.Distributed clustering algorithm based on ensemble learning[J].Journal of Southeast University (Natural Science Edition),2007,37(2):585.[doi:10.3969/j.issn.1001-0505.2007.04.008]
[2]陆介平,刘月波,倪巍伟,等.基于投影数据库的序列模式挖掘增量式更新算法[J].东南大学学报(自然科学版),2006,36(3):457.[doi:10.3969/j.issn.1001-0505.2006.03.026]
 Lu Jieping,Liu Yuebo,Ni Weiwei,et al.Incremental updating algorithm for sequence patterns mining based on projected database[J].Journal of Southeast University (Natural Science Edition),2006,36(2):457.[doi:10.3969/j.issn.1001-0505.2006.03.026]
[3]宋爱波,胡孔法,董逸生.Web日志挖掘[J].东南大学学报(自然科学版),2002,32(1):15.[doi:10.3969/j.issn.1001-0505.2002.01.004]
 Song Aibo,Hu Kongfa,Dong Yisheng.Research on Weblog mining[J].Journal of Southeast University (Natural Science Edition),2002,32(2):15.[doi:10.3969/j.issn.1001-0505.2002.01.004]
[4]胡孔法,张长海,陈崚,等.一种面向物流数据分析的路径序列挖掘算法ImGSP[J].东南大学学报(自然科学版),2008,38(6):970.[doi:10.3969/j.issn.1001-0505.2008.06.007]
 Hu Kongfa,Zhang Changhai,Chen Ling,et al.ImGSP:a path sequence mining algorithm for product flow analysis[J].Journal of Southeast University (Natural Science Edition),2008,38(2):970.[doi:10.3969/j.issn.1001-0505.2008.06.007]
[5]郭海燕,李枭雄,李拟珺,等.基于基频状态和帧间相关性的单通道语音分离算法[J].东南大学学报(自然科学版),2014,44(6):1099.[doi:10.3969/j.issn.1001-0505.2014.06.001]
 Guo Haiyan,Li Xiaoxiong,Li Nijun,et al.Single-channel speech separation based on pitch state and interframe correlation[J].Journal of Southeast University (Natural Science Edition),2014,44(2):1099.[doi:10.3969/j.issn.1001-0505.2014.06.001]

备注/Memo

备注/Memo:
作者简介:吉根林,男,1964年生,副教授,博士研究生.
基金项目:国家自然科学基金资助项目(79970092).
更新日期/Last Update: 2001-03-20