[1]陈晓红,刘颖范.Minimax型极值问题的扰动分析[J].东南大学学报(自然科学版),2001,31(4):125-129.[doi:10.3969/j.issn.1001-0505.2001.04.029] 　Chen Xiaohong,Liu Yingfan.Perturbed Analysis for Minimax Extreme Value Problem[J].Journal of Southeast University (Natural Science Edition),2001,31(4):125-129.[doi:10.3969/j.issn.1001-0505.2001.04.029] 点击复制 Minimax型极值问题的扰动分析() 分享到： var jiathis_config = { data_track_clickback: true };

31

2001年第4期

125-129

2001-07-20

文章信息/Info

Title:
Perturbed Analysis for Minimax Extreme Value Problem

Author(s):
Nanjing University of Aeronautics and Astronautics College of Science, Nanjing 210016, China)

Keywords:

O174.13
DOI:
10.3969/j.issn.1001-0505.2001.04.029

Abstract:
This paper deals with perturbed analysis for Minimax extreme value problem which takes the existence for special example. All know that most of the optimization of economic system can be converted into conditional extreme value problem which takes nonlinear operator or multi-operator as constraints. The latter can be converted into the existence of Max-inf solution and Mini-sup solution of function f(x,y)　defined on proper conduct spaces by means of Hamilton function and Lagrange function. The extreme value problem of function　f(x,y)　defined on product Banach space U×V is discussed.　Some existence theorems, continuity and the expressions of Max-inf solution and Min-sup solution under linear perturbation are obtained. As a corollary, some results with respect to conservative solution and saddle point are obtainted.

参考文献/References:

[1] Yu J.The stability of Ky Fan’s points.Proc Amer Math Soc,1995 (123):1511～1519
[2] Yu J.The uniqueness of saddle points.Polish Academy of Sciences Mathematics,1995 (43):119～129
[3] Yu J.New saddle points theorem beyond topological vector spaces.J Optima Applic,1998,96(1):211～219
[4] Yu J.The study of Pareto equilibrium for multi-objective by fixed point and Ky Fan minimax inequality methods.Computers Math Appl 1998,35(9):12～24
[5] Aubin J P,Ekeland I.Applied nonlinear analysis.New York:Wiley,1984.103～159
[6] Clarke F H.Optimization and nonsmooth analysis.New York:Wiley,1983.9～66
[7] Aubin J P.Lipschitz behavior of solutions to convex minimization problems.Math Oper Res,1984(9):87～111
[8] Zowe J,Kurcyusz S.Regularity and stability for the mathematical programming problem in Banach spaces.Appl Math Opti,1979(5):59～62

备注/Memo

Yu J. The study of minimax inequality,abstract economics and applications to variational inequalities and Nash equilibrium of constrained games. In:ICOTA’95,World Scientific,1578～1598.
Aubin J P. Mathematical metho