[1]陈晓红,刘颖范.Minimax型极值问题的扰动分析[J].东南大学学报(自然科学版),2001,31(4):125-129.[doi:10.3969/j.issn.1001-0505.2001.04.029]
 Chen Xiaohong,Liu Yingfan.Perturbed Analysis for Minimax Extreme Value Problem[J].Journal of Southeast University (Natural Science Edition),2001,31(4):125-129.[doi:10.3969/j.issn.1001-0505.2001.04.029]
点击复制

Minimax型极值问题的扰动分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
31
期数:
2001年第4期
页码:
125-129
栏目:
数学、物理学、力学
出版日期:
2001-07-20

文章信息/Info

Title:
Perturbed Analysis for Minimax Extreme Value Problem
作者:
陈晓红 刘颖范
南京航空航天大学理学院, 南京 210016
Author(s):
Chen Xiaohong Liu Yingfan
Nanjing University of Aeronautics and Astronautics College of Science, Nanjing 210016, China)
关键词:
极大极小解 极小极大解 守恒解 鞍点 稳定性 扰动分析
Keywords:
Max-inf solution Min-sup solution conservative solution saddle point stability perturbed analysis
分类号:
O174.13
DOI:
10.3969/j.issn.1001-0505.2001.04.029
摘要:
本文将考虑以存在性为特例的Minimax型极值问题解集的扰动分析.许多经济系统中的优化问题,可化为用单值非线性算子或多值算子形成约束条件的条件极值问题.这一类问题又可通过Hamilton函数、Lagrange函数转化为适当乘积空间上二元函数f(x,y)的Mini-sup解、Max-inf解的存在性问题.针对以上问题,本文研究了乘积Banach空间U×V上的函数f(x,y)的极值问题, 获得了线性扰动下Mini-sup解、Max-inf解的存在性结果、连续性质和解的表现形式,并导出了Conservative解和鞍点的相关结论.
Abstract:
This paper deals with perturbed analysis for Minimax extreme value problem which takes the existence for special example. All know that most of the optimization of economic system can be converted into conditional extreme value problem which takes nonlinear operator or multi-operator as constraints. The latter can be converted into the existence of Max-inf solution and Mini-sup solution of function f(x,y) defined on proper conduct spaces by means of Hamilton function and Lagrange function. The extreme value problem of function f(x,y) defined on product Banach space U×V is discussed. Some existence theorems, continuity and the expressions of Max-inf solution and Min-sup solution under linear perturbation are obtained. As a corollary, some results with respect to conservative solution and saddle point are obtainted.

参考文献/References:

[1] Yu J.The stability of Ky Fan’s points.Proc Amer Math Soc,1995 (123):1511~1519
[2] Yu J.The uniqueness of saddle points.Polish Academy of Sciences Mathematics,1995 (43):119~129
[3] Yu J.New saddle points theorem beyond topological vector spaces.J Optima Applic,1998,96(1):211~219
[4] Yu J.The study of Pareto equilibrium for multi-objective by fixed point and Ky Fan minimax inequality methods.Computers Math Appl 1998,35(9):12~24
[5] Aubin J P,Ekeland I.Applied nonlinear analysis.New York:Wiley,1984.103~159
[6] Clarke F H.Optimization and nonsmooth analysis.New York:Wiley,1983.9~66
[7] Aubin J P.Lipschitz behavior of solutions to convex minimization problems.Math Oper Res,1984(9):87~111
[8] Zowe J,Kurcyusz S.Regularity and stability for the mathematical programming problem in Banach spaces.Appl Math Opti,1979(5):59~62

备注/Memo

备注/Memo:
作者简介:陈晓红,女,1977年生,硕士研究生.
Yu J. The study of minimax inequality,abstract economics and applications to variational inequalities and Nash equilibrium of constrained games. In:ICOTA’95,World Scientific,1578~1598.
Aubin J P. Mathematical metho
更新日期/Last Update: 2001-07-20