[1]徐泽水,达庆利.3种基于互反判断矩阵的互补判断矩阵排序法[J].东南大学学报(自然科学版),2001,31(5):106-109.[doi:10.3969/j.issn.1001-0505.2001.05.023]
 Xu Zeshui,Da Qingli.Three Reciprocal Judgement Matrices-Based Methods for Priorities of Complementary Judgement Matrices[J].Journal of Southeast University (Natural Science Edition),2001,31(5):106-109.[doi:10.3969/j.issn.1001-0505.2001.05.023]
点击复制

3种基于互反判断矩阵的互补判断矩阵排序法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
31
期数:
2001年第5期
页码:
106-109
栏目:
经济与管理
出版日期:
2001-09-20

文章信息/Info

Title:
Three Reciprocal Judgement Matrices-Based Methods for Priorities of Complementary Judgement Matrices
作者:
徐泽水 达庆利
东南大学经济管理学院, 南京 210096
Author(s):
Xu Zeshui Da Qingli
College of Economics and Management, Southeast University, Nanjing 210096, China)
关键词:
互补判断矩阵 互反判断矩阵 排序
Keywords:
complementary judgement matrices reciprocal judgement matrices priority
分类号:
C934
DOI:
10.3969/j.issn.1001-0505.2001.05.023
摘要:
引进了互反判断矩阵与互补判断矩阵之间的转换公式, 介绍了完全一致性互反判断矩阵和完全一致性互补判断矩阵之间的关系. 提出了3种基于互反判断矩阵的互补判断矩阵排序方法, 详细地研究了它们的一些优良性质, 如: 强条件下保序性等, 并进一步把这些方法推广到群体决策环境中. 从而弥补了互补判断矩阵排序理论和方法的不足, 为解决互补判断矩阵排序问题提供了新的途径. 理论分析和数值结果均表明: 这些排序方法具有简洁、可行、且易于计算器或计算机上实施等优点.
Abstract:
This paper introduces the transformation formulas of reciprocal judgement matrix and complementary judgement matrix, and presents the relationship between the perfectly consistent reciprocal judgement matrix and perfectly consistent complementary judgement matrix. Based on the priority methods of three reciprocal judgement matrices, three methods for priorities of complementary judgement matrices are proposed, and their desired properties such as rank preservation under strong condition, etc. are studied. These three priority methods are also extended to group decision-making. The methods supplement and develop the theory and methodology of priority of complementary judgement matrices. The theoretic analyses and numerical results show that the methods are simple, feasible, and can be performed on computer easily.

参考文献/References:

[1] 王莲芬,许树柏.层次分析法引论.北京:中国人民大学出版社,1990.9~18
[2] 徐泽水.AHP中构造判断矩阵的指数(0,2)标度法.曲阜师范大学学报,1999,25(1):48~50
[3] 徐泽水.层次分析新标度法.系统工程理论与实践,1998,18(10):74~77
[4] 徐泽水.关于层次分析中几种标度的模拟评估.系统工程理论与实践,2000,20(7):58~62
[5] 徐泽水.AHP中两类标度的关系研究.系统工程理论与实践,1999,19(7):97~101
[6] Orlovsky S A.Decision-making with a fuzzy preference relation.Fuzzy Sets and Systems,1978,1(3):155~167
[7] 姚敏,张森.模糊一致性矩阵及其在软科学中的应用.系统工程,1997,15(2):54~26
[8] 徐泽水.Fuzzy 环境中群组决策新方法.曲阜师范大学学报,1997,增刊:1~2
[9] 林均昌,徐泽水.模糊AHP中一种新的标度法.运筹与管理,1998,7(2):37~40
[10] 徐泽水.一种改进的模糊一致性判断矩阵构造方法.应用数学与计算数学学报,1997,11(2):63~67
[11] 王应明.判断矩阵排序方法综述.决策与决策支持系统,1995,5(3):101~114
[12] 徐泽水.层次分析中判断矩阵排序的一种新方法.系统工程学报,1998,13(1):46~56
[13] 徐泽水.综合判断矩阵的一致性及特征值问题研究.系统工程学报,2000,15(3):258~261
[14] Xu Z S,Lu J J.A new method for calculating priorities in AHP.Journal of Systems Science and Systems Engineering,1999,8(2):179~188
[15] Xu Z S,Wei C P.A consistency improving method in the analytic hierarchy process.European Journal of Operational Research,1999,116(2):443~449
[16] Xu Z S.Generalized chi square method for the estimation of weights.Journal of Optimization Theory and Applications,2000,107(1):183~192
[17] 樊治平,胡国奋.模糊判断矩阵一致性逼近及排序方法.运筹与管理,2000,9(3):21~25
[18] 徐泽水.模糊互补判断矩阵排序的一种算法.系统工程学报,2001,16(4):1~4
[19] 徐泽水.广义模糊一致性矩阵及其排序方法.解放军理工大学学报,2000,1(6):97~99

相似文献/References:

[1]孔松泉,达庆利,徐泽水.互补判断矩阵排序的广义χ2法[J].东南大学学报(自然科学版),2002,32(4):659.[doi:10.3969/j.issn.1001-0505.2002.04.028]
 Kong Songquan,Da Qingli,Xu Zeshui.Generalized chi square method for priorities of complementary judgement matrices[J].Journal of Southeast University (Natural Science Edition),2002,32(5):659.[doi:10.3969/j.issn.1001-0505.2002.04.028]

备注/Memo

备注/Memo:
作者简介: 徐泽水,男,1968年生,博士研究生,讲师.
基金项目:国家自然科学基金资助项目(79970093).
更新日期/Last Update: 2001-09-20