[1]杨明,孙志挥,季小俊.基于Rough Set的缺省加权规则挖掘算法[J].东南大学学报(自然科学版),2002,32(1):115-118.[doi:10.3969/j.issn.1001-0505.2002.01.026]
 Yang Ming,Sun Zhihui,Ji Xiaojun.Algorithm based on Rough Set for mining default weighted rules[J].Journal of Southeast University (Natural Science Edition),2002,32(1):115-118.[doi:10.3969/j.issn.1001-0505.2002.01.026]
点击复制

基于Rough Set的缺省加权规则挖掘算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
32
期数:
2002年第1期
页码:
115-118
栏目:
自动化
出版日期:
2002-01-20

文章信息/Info

Title:
Algorithm based on Rough Set for mining default weighted rules
作者:
杨明12 孙志挥1 季小俊1
1 东南大学计算机科学与工程系,南京 210096; 2 安徽机电学院计算机科学与工程系,芜湖 241000
Author(s):
Yang Ming12 Sun Zhihui1 Ji Xiaojun1
1 Department of Computer Science and Engineering,Southeast University,Nanjing 210096, China
2 Department of Computer Science and Engineering,Anhui Institute of Mechanical and Electrical Engineering,Wuhu 241000, China
关键词:
Rough Set 缺省加权规则 加权支持度
Keywords:
Rough Set default weighted rules weighted support measure
分类号:
TP18
DOI:
10.3969/j.issn.1001-0505.2002.01.026
摘要:
本文在引入规则加权支持度概念后,提出了一种基于Rough Set的缺省加权规则挖掘算法——MDWRBR算法.实验结果表明,该算法能有效地过滤躁声、提高规则的挖掘效率.
Abstract:
Both weighted support measure and algorithm MDWRBR for mining default weighted rules based on Rough Set theory are proposed.Experimental result shows that this algorithm can effectively filter noise and improve the efficiency of mining default weighted rules.

参考文献/References:

[1] Pawlak Z.Rough sets [J].International Journal of Information and Computer Science,1982,11(5):341-356.
[2] Raghavan V V,Sever H.The state and rough sets for database mining applications [A].In:23rd Annual Computer Science Workshop on Rough Sets and Database Mining [C].Nashville,Tennessee,1995.1-11.
[3] Chan Chien Chung.A Rough set approach to attribute generalization in data mining [J].Journal of Information Sciences,1998,107(6):169-176.
[4] 马元元,孙志挥,高红梅.时态数据库中增量关联规则的挖掘 [J].计算机研究与发展,2000,37(12):1446-1451.
  Ma Yuanyuan,Sun Zhihui,Gao Hongmei.Mining the increment association rules in temporal database [J].Journal of Computer Research and Development,2000,37(12):1446-1451.(in Chinese)
[5] Mollestad T,Skowron A.A Rough set framework for data mining of propositional default rules [A].In:The 9th In’l Sympon Methodologies for Intelligent System [C].Poland:ISM IS’96,1996.1-15.
[6] 尹旭日,陈世福.一种基于Rough集的缺省规则挖掘算法 [J].计算机研究与发展,2000,37(12):1441-1445.
  Yin Xuri,Chen Shifu.An algorithm based on rough set for mining default rules [J].Journal of Computer Research and Development,2000,37(12):1441-1445.(in Chinese)
[7] Kryszkiewicz M.Rules in incomplete information system [J].Information Sciences,1999,113(2):271-292.
[8] Guan J W,Bell D A.Rough computational methods for information system [J].Artificial Intelligence,1998,105(10):77-103.
[9] Beyuon M.Theory and methodology reduces within the variable precision rough sets model:a further investigation [J].European Journal of Operational Research, 2001,134(2):592-605.
[10] Swiniarski W,Hargis L.Rough sets as a front end of neural-network texture classfiers [J].Neurocomputing,2001,36(2):85-102.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金资助项目(79970092).
作者简介: 杨明(1964—), 男, 博士生,副教授; 孙志挥(联系人), 男, 教授, 博士生导师, sunkety@jlonline.com.
更新日期/Last Update: 2002-01-20