[1]孙燕,陈森发,周振国.灰色系统理论在无检测器交叉口交通流量预测中的应用[J].东南大学学报(自然科学版),2002,32(2):256-258.[doi:10.3969/j.issn.1001-0505.2002.02.024]
 Sun Yan,Chen Senfa,Zhou Zhenguo.Application of grey models to traffic flow prediction at non-detector intersections[J].Journal of Southeast University (Natural Science Edition),2002,32(2):256-258.[doi:10.3969/j.issn.1001-0505.2002.02.024]
点击复制

灰色系统理论在无检测器交叉口交通流量预测中的应用()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
32
期数:
2002年第2期
页码:
256-258
栏目:
交通运输工程
出版日期:
2002-03-20

文章信息/Info

Title:
Application of grey models to traffic flow prediction at non-detector intersections
作者:
孙燕 陈森发 周振国
东南大学经济管理学院系统工程研究所,南京 210096
Author(s):
Sun Yan Chen Senfa Zhou Zhenguo
Institute of Systems Engineering, College of Economics and Management, Southeast University, Nanjing 210096, China
关键词:
灰色系统理论 交通量预测 GM(11)模型
Keywords:
grey system theory traffic flow prediction GM(11)model
分类号:
U491.14
DOI:
10.3969/j.issn.1001-0505.2002.02.024
摘要:
为解决一般预测方法要求原始数据量较大,而无检测器交叉口所能获得的交通流量数据又非常有限的矛盾,提出了利用灰色系统理论预测无检测器交叉口交通流量的方法,并建立了一种新的自适应GM(1,1)模型.利用编制的计算机程序对常熟市无检测器交叉口交通流量进行预测计算分析,结果表明自适应GM(1,1)模型可以根据有限的交通流量数据进行预测,且预测精度较之全数据GM(1,1)模型有显著提高.实践证明,该方法是有效的.
Abstract:
Conventional prediction methods require large number of samples while traffic flow data at non-detector intersections is very limited. To solve this problem a new self-adapting GM(1,1)model to predict traffic flow at non-detector intersections using the grey theory is proposed. The practical implementation of the new model through calculating program compiled was accomplished by a case study in Changshu, Jiangsu province. Results show that self-adapting GM(1,1)can achieve much better prediction accuracy than that of total data GM(1,1).

参考文献/References:

[1] Qiao F X,Yang H,William H K Lam.Intelligent simulation and prediction of traffic flow dispersion [J]. Transportation Research Part B,2001,35:843-863.
[2] Chen H B,Muller G S.Use of sequential learning for short-term traffic flow forecasting[J]. Transportation Research Part C,2001,9:319-336.
[3] Corinne L.A urban traffic flow model integrating neural networks[J]. Transportation Research Part C,1997,5:287-300.
[4] Hobeika A G,Kim Kyun Chang.Traffic flow prediction systems based on upstream traffic[A].In:Vehicle Navigation and Information System Conference Proceeding [C].1995.345-350.
[5] 朱中,杨兆升.实时交通流量人工神经网络预测模型[J].中国公路学报,1998,11(4):89-92.
  Zhu Zhong,Yang Zhaosheng.A real-time traffic flow prediction model based on artificial neural network [J].China Journal of Highway and Transportation,1998,11(4):89-12.(in Chinese)
[6] 初连禹,杨兆升.基于神经网络的实时交通流量模糊预测 [J].中国公路学报,1998,11(增刊):78-82.
  Chu Lianyu,Yang Zhaosheng.Real-time traffic volume prediction based on fuzzy neural [J].China Journal of Highway and Transportation,1998,11(Sup):78-82.(in Chinese)
[7] 邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1990.266-358.
  Deng Julong.Grey system theory course [M].Wuhan:Huazhong University of Science and Technology Press,1990.266-358.(in Chinese)

备注/Memo

备注/Memo:
基金项目: 公安部“九五”重点科技攻关资助项目(96-A15-02-04).
作者简介: 孙燕(1975—)女,博士生; 陈森发(联系人),男,教授,博士生导师.
更新日期/Last Update: 2002-03-20