[1]陈一梅,徐造林.水利枢纽下游河段设计最低通航水位推算方法探讨[J].东南大学学报(自然科学版),2002,32(2):259-263.[doi:10.3969/j.issn.1001-0505.2002.02.025]
 Chen Yimei,Xu Zaolin.Study on method of calculating designed lowest navigable stage at downstream stretch of hydro-junction[J].Journal of Southeast University (Natural Science Edition),2002,32(2):259-263.[doi:10.3969/j.issn.1001-0505.2002.02.025]
点击复制

水利枢纽下游河段设计最低通航水位推算方法探讨()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
32
期数:
2002年第2期
页码:
259-263
栏目:
其他
出版日期:
2002-03-20

文章信息/Info

Title:
Study on method of calculating designed lowest navigable stage at downstream stretch of hydro-junction
作者:
陈一梅1徐造林2
1 东南大学交通学院, 南京 210096; 2 东南大学计算机科学与工程系, 南京 210096
Author(s):
Chen Yimei1 Xu Zaolin2
1 Transportation College, Southeast University, Nanjing 210096, China
2 Department of Computer Science and Engineering, Southeast University, Nanjing 210096, China
关键词:
神经网络模型 设计最低通航水位 水利枢纽
Keywords:
artificial neural network model designed lowest navigable stage hydro-junction
分类号:
P338.3
DOI:
10.3969/j.issn.1001-0505.2002.02.025
摘要:
在分析影响水利枢纽下游河段设计最低通航水位因素的基础上,将设计最低通航水位计算问题概括为一种非线性输入输出的泛函关系,以人工神经网络原理建立推算水利枢纽下游河段设计最低通航水位的BP神经网络模型.用此模型,对闽江水口坝下观音岐设计最低通航水位进行网络计算.在此基础上,将BP网络模型与模拟分析法进行了对比分析,2种方法所得结果相近,但BP网络模型具有较高精度.本文为水利枢纽下游设计最低通航水位计算提供了一种新方法.
Abstract:
Based on analyzing affecting factors of the designed lowest navigable stage, the problem of calculating the designed lowest navigable stage at downstream stretch of hydro-junction is generalized as a nonlinear functional relation between input and output. The back propagation(BP)networks mode calculating the designed lowest navigable stage is established on artificial neural network model principle. The designed lowest navigable stage at Guanyingqi downstream Shuikou dike of Minjiang is calculated by the BP network mode. A comparison between BP network model and the model analysis on observed data is made. The results of two methods are about the same, but the BP network model possesses higher accuracy. Thus a new method is provided for the design of lowest navigable stage at downstream stretch of hydro-junction.

参考文献/References:

[1] 陈一梅,李奕琼.水口电站运行以来对坝下航道影响研究[J].水利水电快报,1999(7):5-9.
  Chen Yimei,Li Yiqiong.Study on channel change of the dike downstream since Shuikou hydropower station is in motion [J].Express Water Resources & Hydropower Information,1999(7):5-9.(in Chinese)
[2] 彭清娥,刘兴年,曹叔元.流域年均含沙量的人工神经网络模型[J].水利学报,2000(11):79-83.
  Peng Qinge,Liu Xingnian,Cao Shuyou.Artificial neural networks model of annual average sediment concentration in a watershed [J].Journal of Hydraulic Engineering,2000(11):79-83.(in Chinese)
[3] 李义天,李荣,黄伟.基于神经网络的水沙运动预报模型与回归模型比较及应用 [J].泥沙研究,2001(1):30-37.
  Li Yitian,Li Rong,Huang Wei.Application and comparison of fluid-sediment ANN prediction model with empirical model[J]. Journal of Sediment Research,2001(1):30-37.(in Chinese)
[4] 赵振宇.模糊理论和神经网络的基础与应用[M].北京:清华大学出版社,1996.85-86.
  Zhao Zhenyu.Fuzzy theory & application and fundamentals of neural network[M].Beijing:Tsinghua University Press,1996.85-86.(in Chinese)
[5] 闻新,周露,王丹力.MATLAB神经网络应用设计 [M].北京:科学出版社,2000.207-212.
  Wen Xin,Zhou Lu,Wang Danli.Application and design of MATLAB neural networks[M].Beijing:Science press,2000.207-212.(in Chinese)
[6] 鲍立威,何敏.关于BP模型的缺陷的讨论[J].模式识别与人工智能,1995,8(1):1-5.
  Bao Liwei,He Min.Study on defect of a BP model[J].Pattern Recognition and Artificial Intelligence,1995,8(1):1-5.(in Chinese)

相似文献/References:

[1]甘强,韦钰.一个非全局连接神经网络模型[J].东南大学学报(自然科学版),1992,22(5):1.[doi:10.3969/j.issn.1001-0505.1992.05.001]
 Can Qiang,Wei Yu.A Model for Unfully Interconnected Neural Networks[J].Journal of Southeast University (Natural Science Edition),1992,22(2):1.[doi:10.3969/j.issn.1001-0505.1992.05.001]

备注/Memo

备注/Memo:
基金项目: 东南大学科学基金资助项目(9221001076).
作者简介: 陈一梅(1961—), 女, 博士生,副教授,xuzaolin@jlonline.com.
更新日期/Last Update: 2002-03-20