[1]王兴松,张正峰,王中华,等.定位平台非线性摩擦的神经网络补偿[J].东南大学学报(自然科学版),2002,32(4):605-609.[doi:10.3969/j.issn.1001-0505.2002.04.015]
 Wang Xingsong,Zhang Zhengfeng,Wang Zhonghua,et al.Nonlinear friction compensation based on neural networks for the positioning table[J].Journal of Southeast University (Natural Science Edition),2002,32(4):605-609.[doi:10.3969/j.issn.1001-0505.2002.04.015]
点击复制

定位平台非线性摩擦的神经网络补偿()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
32
期数:
2002年第4期
页码:
605-609
栏目:
自动化
出版日期:
2002-07-20

文章信息/Info

Title:
Nonlinear friction compensation based on neural networks for the positioning table
作者:
王兴松1 张正峰1 王中华2 周香1
1 东南大学机械工程系,南京 210096; 2 济南大学信息科学与工程学院,济南 250022
Author(s):
Wang Xingsong1 Zhang Zhengfeng1 Wang Zhonghua2 Zhou Xiang1
1 Department of Mechanical Engineering, Southeast University, Nanjing 210096,China
2 School of Information Science and Technology, Jinan University, Jinan 250022, China
关键词:
神经网络 定位平台 非线性摩擦补偿
Keywords:
neural-networks positioning table nonlinear friction compensation
分类号:
TP27
DOI:
10.3969/j.issn.1001-0505.2002.04.015
摘要:
提出了一种基于BP神经网络的机械伺服系统非线性摩擦的补偿方法,根据该方法设计出一种将经典的PD控制与神经网络控制相结合的控制器.该控制器既有PD控制的优点,又有神经网络逼近非线性函数的能力,较好地补偿了系统中的非线性摩擦和外部扰动.应用Lyapunov稳定性定理,证明了系统的稳定性,并得到系统跟踪误差的边界值.采用刚毛摩擦动力学模型,对X-Y定位平台进行仿真和实验.结果表明该控制器能够补偿系统的非线性因素,保证了系统的稳定,减小了跟踪误差.该方案控制效果明显优于PD控制,可用于工业设备的控制中.
Abstract:
A BP neural networks based compensation method for nonlinear friction in mechanical servo systems is presented. According to the proposed method the controller, which is composed of a traditional PD controller and an NN controller, is designed. It has both the merits of the PD controllers and the general approximation property of the neural networks, and can be employed to compensate the nonlinear friction and other disturbances. The stability of this method was proved using Lyapunov stability theory, and the boundary of the tracking error was derived as well. By using bristle dynamic friction model, simulations and experiments were conducted on an X-Y positioning table. The experiment results demonstrate that the controller can compensate the nonlinear factors in the system, guarantee the system stability and diminish the tracking error. Therefore it can be applied in industries with better performance.

参考文献/References:

[1] Jang O,Jeon G J.A parallel neuro-controller for DC motors containing nonlinear friction[J].Neurocomputing,2000,30(3):233-248.
[2] Horni K,Stinchombe M,White S H.Multilayer feedward networks are universal approximators[J].Neural Networks,1989,2(4):359-366.
[3] 王中华,王兴松,徐卫良.X-Y定位平台的鲁棒自适应摩擦补偿[J].东南大学学报(自然科学版),2002,32(1):69-72.
  Wang Zhonghua,Wang Xingsong,Xu Weiliang.Robust adaptive friction compensation for X-Y positioning table[J].Journal of Southeast University(Natural Science Edition),2002,32(1):69-72.(in Chinese)
[4] Frank L Lewis,Liu Kai.Multilayer neural-networks robot controller with guaranteed tracking performance[J].IEEE Transactions on Neural Networks, 1996,7(2):388-398.
[5] 王中华,王兴松,王群,等.高精度鲁棒运动控制器设计及实验研究[J].控制与决策,2001,16(z1):656-659.
  Wang Zhonghua,Wang Xingsong,Wang Qun,et al.Study of high accuracy robust motion controller design and its experiment[J].Control and Decision,2001,16(z1):656-659.(in Chinese)
[6] de Wit C Canudas,Olsson H,Astrom K J,et al.A new model for control of systems with friction[J]. IEEE Transactions on Automatic Control, 1995,40(3):419-425.

相似文献/References:

[1]胡伍生,沙月进.神经网络BP算法的误差分级迭代法[J].东南大学学报(自然科学版),2003,33(3):376.[doi:10.3969/j.issn.1001-0505.2003.03.032]
 Hu Wusheng,Sha Yuejin.Error grade iterative method of BP neural networks[J].Journal of Southeast University (Natural Science Edition),2003,33(4):376.[doi:10.3969/j.issn.1001-0505.2003.03.032]
[2]朱大奇,于盛林.电子电路故障诊断的神经网络数据融合算法[J].东南大学学报(自然科学版),2001,31(6):87.[doi:10.3969/j.issn.1001-0505.2001.06.021]
 Zhu Daqi,Yu Shenglin.Neural Network Data Fusion Algorithm of Circuit Fault Diagnosis[J].Journal of Southeast University (Natural Science Edition),2001,31(4):87.[doi:10.3969/j.issn.1001-0505.2001.06.021]
[3]倪富健,屠伟新,黄卫.基于神经网络技术的路面性能预估模型[J].东南大学学报(自然科学版),2000,30(5):91.[doi:10.3969/j.issn.1001-0505.2000.05.021]
 Ni Fujian,Tu Weixing,Huang Wei.Pavement Performance Forecasting Model by Using Neural Network[J].Journal of Southeast University (Natural Science Edition),2000,30(4):91.[doi:10.3969/j.issn.1001-0505.2000.05.021]
[4]窦东阳,杨建国,李丽娟,等.基于规则的神经网络在模式分类中的应用[J].东南大学学报(自然科学版),2011,41(3):482.[doi:10.3969/j.issn.1001-0505.2011.03.010]
 Dou Dongyang,Yang Jianguo,Li Lijuan,et al.Application of rule-based neural network in pattern classification[J].Journal of Southeast University (Natural Science Edition),2011,41(4):482.[doi:10.3969/j.issn.1001-0505.2011.03.010]
[5]李建,刘红星,王仲宇.前馈网络构造性设计中基于GP实现神经元激活函数类型优化[J].东南大学学报(自然科学版),2004,34(6):746.[doi:10.3969/j.issn.1001-0505.2004.06.007]
 Li Jian,Liu Hongxing,Wang Zhongyu.Optimizing neuronal activation function types based on GP in constructive FNN design[J].Journal of Southeast University (Natural Science Edition),2004,34(4):746.[doi:10.3969/j.issn.1001-0505.2004.06.007]
[6]黄清.自适应宽带稳健波束形成及神经网络算法[J].东南大学学报(自然科学版),2002,32(2):172.[doi:10.3969/j.issn.1001-0505.2002.02.005]
 Huang Qing.Robust adaptive broadband beamforming and neural network[J].Journal of Southeast University (Natural Science Edition),2002,32(4):172.[doi:10.3969/j.issn.1001-0505.2002.02.005]
[7]朱明程,徐健,李昆华.采用MCU多层神经网络模型设计探讨[J].东南大学学报(自然科学版),2000,30(2):21.[doi:10.3969/j.issn.1001-0505.2000.02.005]
 Zhu Mingcheng,Xu Jian,Li Kunhua.A Novel Model Design Adopting MCU for Multilayer Neural Network[J].Journal of Southeast University (Natural Science Edition),2000,30(4):21.[doi:10.3969/j.issn.1001-0505.2000.02.005]
[8]吴新根,柏毅,罗立民.一种基于概率神经网络模型的胃病诊断专家系统[J].东南大学学报(自然科学版),1999,29(4):57.[doi:10.3969/j.issn.1001-0505.1999.04.013]
 Wu Xingen,Bai Yi,Luo Limin.A Neural Network Model Based on Bayesian Posterior Probability[J].Journal of Southeast University (Natural Science Edition),1999,29(4):57.[doi:10.3969/j.issn.1001-0505.1999.04.013]
[9]程乃毅,赵显曾.点模式识别ANN的区域分划特征[J].东南大学学报(自然科学版),1995,25(1):69.[doi:10.3969/j.issn.1001-0505.1995.01.013]
 Cheng Naiyi,Zhao Xianzeng,Zhao Xianzeng.Domain Partition Features of ANN for Point Pattem Recognition[J].Journal of Southeast University (Natural Science Edition),1995,25(4):69.[doi:10.3969/j.issn.1001-0505.1995.01.013]
[10]夏又生,黄俊良.一类线性互补问题的神经网络求解[J].东南大学学报(自然科学版),1995,25(6):25.[doi:10.3969/j.issn.1001-0505.1995.06.005]
 Xia Youshen,Huang Junliang.Neural Network for Solving a Class of Linear Complementary Problems[J].Journal of Southeast University (Natural Science Edition),1995,25(4):25.[doi:10.3969/j.issn.1001-0505.1995.06.005]

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金资助项目(59885002)、高等学校博士学科点专项科研基金资助项目(98028625).
作者简介: 王兴松(1965—),男,博士,副教授,xswang@seu.edu.cn.
更新日期/Last Update: 2002-07-20