# [1]吴仲乐,罗立民.可形变简单多边形重建算法[J].东南大学学报(自然科学版),2003,33(1):86-89.[doi:10.3969/j.issn.1001-0505.2003.01.022] 　Wu Zhongle,Luo Limin.Deformable simple polygon reconstruction algorithm[J].Journal of Southeast University (Natural Science Edition),2003,33(1):86-89.[doi:10.3969/j.issn.1001-0505.2003.01.022] 点击复制 可形变简单多边形重建算法() 分享到： var jiathis_config = { data_track_clickback: true };

33

2003年第1期

86-89

2003-01-20

## 文章信息/Info

Title:
Deformable simple polygon reconstruction algorithm

Author(s):
Laboratory of Image Science and Technology, Department of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China

Keywords:

TP301.6
DOI:
10.3969/j.issn.1001-0505.2003.01.022

Abstract:
An approach is presented to deform the selected edges of a convex polygon for getting a simple polygon which is closer to the outside shape of a point set within a plane. The convex polygon of a point set is constructed by Graham’s algorithm. The selection of edges to make deform is controlled by a precision factor and the deformation is made through adding new points to the edge. In the deformation progress, according to the density of points near to the selected edges, different ways for inserting points are considered. The algorithm is independent of the sequence of points.

## 参考文献/References:

[1] Preparate F P,Shamos M L.Computational Geometry[M].New York:Springer-Verlag,1985.113-150.
[2] 闵卫东,唐泽圣.二维任意域点集的Delaunay三角划分的研究[J].计算机学报,1995,18(5):357-364.
Min Weidong,Tang Zesheng.Algorithm for generating the Delaunay triangulation of a point set within an arbitrary 2D domain[J]. Chinese Journal of Computers, 1995,18(5):357-364.(in Chinese)
[3] Liu Hongchih,Srinath M D.Corner detection from chain-code[J].Pattern Recogintion, 1990,23(1):51-68.
[4] 马小虎,潘支庚,石教英.确定多边形凸凹顶点的快速算法及其应用[J].计算机工程与设计,1998,19(3):45-49.
Ma Xiaohu,Pan Zhigeng,Shi Jiaoying.A fast Algorithm for determining convex-concave vertices of an arbitrary polygon and its application[J]. Computer Engineering and Design,1998, 19(3):45-49.(in Chinese)
[5] O’Rourke Joseph.Computational Geometry in C[M].Cambridge:Cambridge University Press,1994.63-96.