# [1]朱斌,董剑,舒华忠,等.二值图像Legendre矩快速算法[J].东南大学学报(自然科学版),2003,33(1):90-93.[doi:10.3969/j.issn.1001-0505.2003.01.023] 　Zhu Bin,Dong Jian,Shu Huazhong,et al.Fast method for computing Legendre moments of binary images[J].Journal of Southeast University (Natural Science Edition),2003,33(1):90-93.[doi:10.3969/j.issn.1001-0505.2003.01.023] 点击复制 二值图像Legendre矩快速算法() 分享到： var jiathis_config = { data_track_clickback: true };

33

2003年第1期

90-93

2003-01-20

## 文章信息/Info

Title:
Fast method for computing Legendre moments of binary images

Author(s):
Department of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China

Keywords:

TP391.41
DOI:
10.3969/j.issn.1001-0505.2003.01.023

Abstract:
An efficient algorithm for fast computing the Legendre moments of binary images is presented. First, Yang’s discrete Green’s theorem is used to transform the pixel-based calculation of Legendre moments into the contour-based calculation. Then, the boundary points are extracted. By using Shu’s theorems the sum of Legendre polynomial of the boundary points is calculated. By these three steps, the calculation of two-dimensional Lengendre moments is transformed into that of one-dimensional Legendre moments, and the complexity of calculation is efficiently reduced. The method of computing one dimensional Legendre moments by Hatamian filter is introduced. Experimental results show that this method is feasible.

## 参考文献/References:

[1] Hu M K.Visual pattern recognition by moment invariants[J]. IEEE Transaction on Information Theory,1962,8(1):179-187.
[2] Mukunman R,Ramakrishman K R.Fast computation of Lengendre and Zernike moments[J]. Pattern Recognition,2000,28(2):341-348.
[3] Liao S X,Pawlak M.On image analysis by moments[J].IEEE Trans Pattern Analysis and Machine Intelligence,1996,18(3):254-266.
[4] Zhou J D,Shu H Z.Two new algorithms for efficient computation of Legendre moment[J]. Pattern Recognition,2002,35:1143-1152.
[5] Yang L,Albregtsen F.Fast and exact computation of Cartesian geometric moments using discrete Green’s theorem[J].Pattern Recognition,1996,29:1061-1073.
[6] Shu Huazhong,Luo Limin,Bao Xudong,et al.An efficient method for computation of Legendre moment[J]. Graphical Models and Imaging Processing,2000,62:237-262.
[7] Hatamian M.A real-time two-dimensional moment generating algorithm and its single chip implementation[J].ASSP,1986,34:546-553.
[8] Li B C,Shen J.Fast computation of moment invariants[J]. Pattern Recognition,1991,24:1119-1128.
[9] Li B C.A new computation of geometric moments[J]. Pattern Recognition,1993,26:109-113.
[10] Shu H Z,Luo L M,Yu W X,et al.A new fast method for computing Lengendre moments[J]. Pattern Recognition,2000,33(2):341-348.
[11] Dai M,Baylou P,Nanjim M.An efficient algorithm for computation of shape moments from run-length codes or chain codes[J]. Pattern Recognition,1992,25:1119-1128.
[12] Zakaria M F,Vroomen L J,Zsombor-Murray P J A,et al.Fast algorithm for the computation of moment invariants[J]. Pattern Recognition,1987,20:639-643.