[1]徐泽水,达庆利.有序加权集结算子的赋权方法[J].东南大学学报(自然科学版),2003,33(1):94-96.[doi:10.3969/j.issn.1001-0505.2003.01.024]
 Xu Zeshui,Da Qingli.Approaches to obtaining the weights of the ordered weighted aggregation operators[J].Journal of Southeast University (Natural Science Edition),2003,33(1):94-96.[doi:10.3969/j.issn.1001-0505.2003.01.024]
点击复制

有序加权集结算子的赋权方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
33
期数:
2003年第1期
页码:
94-96
栏目:
经济与管理
出版日期:
2003-01-20

文章信息/Info

Title:
Approaches to obtaining the weights of the ordered weighted aggregation operators
作者:
徐泽水 达庆利
东南大学经济管理学院, 南京 210096
Author(s):
Xu Zeshui Da Qingli
College of Economics and Management, Southeast University, Nanjing 210096, China
关键词:
有序加权平均算子 有序加权几何平均算子 权重 模型
Keywords:
ordered weighted averaging operator ordered weighted geometric averaging operator weight model
分类号:
C934
DOI:
10.3969/j.issn.1001-0505.2003.01.024
摘要:
对有序加权集结算子中的2个最重要算子(有序加权平均算子和有序加权几何平均算子)的赋权方法进行了研究. 利用已知的样本数据以及专家事先对每个样本所给定的偏好集结值, 给出了部分权重信息下求解这2种算子的加权向量的线性目标规划模型, 通过算例对模型进行了说明. 数值结果表明了模型的可行性和有效性.
Abstract:
The approaches to determining the weights of two of the most important ordered weighted aggregating operators(the ordered weighted averaging(OWA)and the ordered weighted geometric averaging(OWGA)operators)are studied. By using the known arguments of samples and the relevant aggregated values given by experts, two linear objective programming models for obtaining the weights of OWA and OWGA operators under partial weight information are given. An illustrative example is provided to illustrate the developed models. The numerical results show that the models are feasible and effective.

参考文献/References:

[1] Yager R R.On ordered weighted averaging aggregation operators in multicriteria decision making [J].IEEE Transactions on Systems,Man,and Cybernetics,1988,18:183-190.
[2] Yager R R,Kacprzyk J.The ordered weighted averaging operators:theory and applications[M].Norwell,MA:Kluwer,1997.10-100.
[3] 徐泽水.一种不确定型OWA算子及其在群决策中的应用[J].东南大学学报(自然科学版),2002,32(1):147-150.
  Xu Zeshui.Uncertain ordered weighted averaging(OWA)operator and its application to group decision making [J]. Journal of Southeast University(Natural Science Edition),2002,32(1):147-150.(in Chinese)
[4] 徐泽水,达庆利.一种组合加权几何平均算子及其应用[J].东南大学学报(自然科学版),2002,32(3):506-509.
  Xu Zeshui,Da Qingli.Combined weighted geometric averaging operator and its application [J].Journal of Southeast University(Natural Science Edition),2002,32(3):506-509.(in Chinese)
[5] Torra V.The weighted OWA operator [J]. International Journal of Intelligent Systems,1997,12:153-166.
[6] Mitchell H B,Estrakh D D.An OWA operator with fuzzy ranks [J].International Journal of Intelligent Systems,1998,13:69-81.
[7] Filev D,Yager R R.On the issue of obtaining OWA operator weights[J]. Fuzzy Sets and Systems, 1998,94:157-169.
[8] Schaefer P A,Mitchell H B.A generalized OWA operator [J].International Journal of Intelligent Systems,1999,14:123-143.
[9] Yager R R,Filev D P.Induced ordered weighted averaging operators [J].IEEE Transaction on Systems,Man,and Cybernetics,1999,29:141-150.
[10] Xu Z S,Da Q L.The uncertain OWA operator [J].International Journal of Intelligent Systems,2002, 17:569-575.
[11] Xu Z S,Da Q L.The ordered weighted geometric averaging operators [J].International Journal of Intelligent Systems,2002,17:709-716.
[12] Herrera F,Herrera-Viedma E,Chiclana F.Multiperson decision-making based on multiplicative preference relations [J].European Journal of Operational Research,2001,129:372-385.
[13] O’Hagan M.Aggregating template or rule antecedents in real-time expert systems with fuzzy set logic [A].In:Proc 22nd Annual IEEE Asilomar Conf On Signals,Systems and Computers[C].Pacific Grove,CA,1988.681-689.
[14] Fullér R,Majlender P.An analytic approach for obtaining maximal entropy OWA operator weights [J].Fuzzy Sets and Systems,2001,124:53-57.
[15] 胡毓达.实用多目标最优化[M].上海:上海科学技术出版社,1990.185-264.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金资助项目(79970093)、东南大学-南瑞继保公司学位论文基金资助项目.
作者简介: 徐泽水(1968—),男,博士生,副教授; 达庆利(联系人),男,教授,博士生导师,dql@public1.ptt.js.cn.
更新日期/Last Update: 2003-01-20