[1]王浩.计算圆色数的混合整数规划方法[J].东南大学学报(自然科学版),2003,33(4):507-510.[doi:10.3969/j.issn.1001-0505.2003.04.031]
 Wang Hao.Integer programming of circular chromatic number[J].Journal of Southeast University (Natural Science Edition),2003,33(4):507-510.[doi:10.3969/j.issn.1001-0505.2003.04.031]
点击复制

计算圆色数的混合整数规划方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
33
期数:
2003年第4期
页码:
507-510
栏目:
数学、物理学、力学
出版日期:
2003-07-20

文章信息/Info

Title:
Integer programming of circular chromatic number
作者:
王浩
东南大学数学系,南京 210096
Author(s):
Wang Hao
Department of Mathematics, Southeast University, Nanjing 210096, China
关键词:
圆色数 圆着色 区间着色 周长 独立数
Keywords:
circular chromatic number circular coloring interval coloring circumference independency number
分类号:
O157.5
DOI:
10.3969/j.issn.1001-0505.2003.04.031
摘要:
通过讨论圆色数几个等价的定义,建立了一个求解圆色数χc(G)近似值的混合整数规划,并进一步给出了圆色数χc(G)的精确值.之后,利用这些结果计算了一类特殊图的圆色数χc(G),确定了此类图的圆色数的精确值.
Abstract:
From some basic concepts and results of the circular number χc(G), an integer programming for the approximation value of χc(G) is proposed. An algorithm for the true value is also given. With the conclusions above, all the true values of the χc(G) of a particular kind of planar graphs are discussed and proven.

参考文献/References:

[1] Vince A.Star chromatic number[J]. Journal of Graph Theory,1988,12(4):551-559.
[2] Zhou B.Some theorems concerning the star chromatic number of a graph[J]. J Comb Theory(B), 1997, 70:245-258.
[3] Zhu X.Construction of uniquely H-colorable graphs[J]. Journal of Graph Theory,1999,30(1):1-6.
[4] Zhu X.Graphs whose circular chromatic number equal the chromatic number [J]. Combinattorica,1999,19:139-149.
[5] Zhu X.Planar graphs with circular chromatic numbers between 3 and 4,[J].J Comb Theory(B),1999,76:170-200.
[6] Zhu X.Circular coloring and graph homomorphisms [J]. Bulletin of Australian Mathematical Society, 1999,59:83-97.

备注/Memo

备注/Memo:
作者简介: 王浩(1978—),男,硕士生.
更新日期/Last Update: 2003-07-20