# [1]宋启根,庄和星,吕令毅.变截面梁柱刚度方程的近似解[J].东南大学学报(自然科学版),2003,33(5):553-556.[doi:10.3969/j.issn.1001-0505.2003.05.005] 　Song Qigen,Zhuang Hexing,Lü Lingyi.Approximate solution of stiffness equation of a non-uniform beam-column[J].Journal of Southeast University (Natural Science Edition),2003,33(5):553-556.[doi:10.3969/j.issn.1001-0505.2003.05.005] 点击复制 变截面梁柱刚度方程的近似解() 分享到： var jiathis_config = { data_track_clickback: true };

33

2003年第5期

553-556

2003-09-20

## 文章信息/Info

Title:
Approximate solution of stiffness equation of a non-uniform beam-column

1 东南大学土木工程学院, 南京 210096; 2 厦门市建筑设计院, 厦门 361012
Author(s):
1 College of Civil Engineering, Southeast University, Nanjing 210096, China
2 Xiamen Design Institute of Civil Architecture, Xiamen 361012, China

Keywords:

TU375.4
DOI:
10.3969/j.issn.1001-0505.2003.05.005

Abstract:
Taking a fifth-order polynomial as the deflection function w of a non-uniform beam-column, the stiffness coefficient and w can be determined by the principle of minimum potential energy. Through the comparison of the calculation results for the beam-columns with varying cross sections according to a power function and the correct results by the Bessel function, the validity of the approximate solution is examined. It is shown that the accuracy of the approximate solution is satisfactory when the ration of I00(the maximum moment of inertia of the cross section of the member)to i(the minimum moment of inertia of the cross section of the member)is less than 10 and the ratio of P(the applied axial load)to Pcr(the critical load of the member)is less than 2. It is expected that the method would also be valid for the elasto-plastic beam-column, which can be regarded as an analogical non-uniform member.

## 参考文献/References:

[1] Chan S L,Zhou Z H.Pointwise equilibrating polynomial element for nonlinear analysis of frames [J].J Struct Engrg ASCE,1994,120(6):1307-1717.
[2] Feng L X,Wong Y L,Chan S L.Strength analysis of semi-rigid steel concrete composite frames [J].J Construct Steel Res,1999,52(3):269-292.
[3] Teh L H,Clarke M J.Plastic-zone analysis of 3D steel frames using beam element [J].J Struct Engrg ASCE,1999,125(8):1328-1337.
[4] 宋启根,徐梁,宋丹.变截面梁柱刚度方程的Bessel函数解[J].计算力学学报,2001,18(3):355-357.
Song Qigen,Xu Liang,Song Dan.Solution of stiffness equations of beam-calumn with varying section by Bessel function [J]. Chinese Journal of Computational Mechanics,2001,18(3):355-357.(in Chinese)
[5] 金尼克 A H.纵向弯曲与扭转[M].谢贻权译.上海:上海科技出版社,1962.75-86.
[6] 庄和星.弹塑性梁柱刚度方程的能量解[D].南京:东南大学土木工程学院,2003.