# [1]方志耕,刘思峰.基于纯策略的灰矩阵博弈模型研究(Ⅰ)——标准灰矩阵博弈模型构建[J].东南大学学报(自然科学版),2003,33(6):796-800.[doi:10.3969/j.issn.1001-0505.2003.06.027] 　Fang Zhigeng,Liu Sifeng.Study on grey matrix game based on pure strategy(Ⅰ): building on normal grey matrix game[J].Journal of Southeast University (Natural Science Edition),2003,33(6):796-800.[doi:10.3969/j.issn.1001-0505.2003.06.027] 点击复制 基于纯策略的灰矩阵博弈模型研究(Ⅰ)——标准灰矩阵博弈模型构建() 分享到： var jiathis_config = { data_track_clickback: true };

33

2003年第6期

796-800

2003-11-20

## 文章信息/Info

Title:
Study on grey matrix game based on pure strategy(Ⅰ): building on normal grey matrix game

1 南京航空航天大学经济与管理学院, 南京 210016; 2 解放军汽车管理学院, 蚌埠 233011
Author(s):
1 School of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2 Auto Management Institute, Bengbu 233011, China

Keywords:

C931;F224
DOI:
10.3969/j.issn.1001-0505.2003.06.027

Abstract:
The problems of grey matrix game, based on non-exactitude mathematics, are researched. Similarity and variance between classical matrix game and grey matrix game are analyzed and researched from the new visual angle of the grey systems theories. We build the model of strict norm and criterion in the paper. On the one hand,the classical matrix game is a particular case of strict norm model. On the other hand,the strict norm grey game is the classical matrix game that is generalized in the field of the grey system. However,the strict standard grey matrix game is a special situation. In fact,the standard grey matrix game is more fitting to practical circumstance than is the classical matrix game. Therefore,it has more applicability than the classical matrix game. As a matter of fact,on the one hand,the classical game is generalized in the field of uncertain grey. On the other hand,the category of theories of the game is enriched by the paper.

## 参考文献/References:

[1] Friedman Daniel.On economy applications of evolutionary game theory [J]. Evolutionary Economics,1998(8):15-34.
[2] Balkenborg Dieter,Schlag Karl H.Evolutionarily stable sets[J].International Journal Game Theory, 2001(29):571-595.
[3] 谢识予.有限理性条件下的进化博弈理论[J].上海财经大学学报,2001,3(5):3-9.
Xie Shiyu.Evolutionary game theory under bounded rationality [J].Journal of Shanghai University of Finance and Economics, 2001, 3(5):3-9.(in Chinese)
[4] 刘思峰,郭天榜,党耀国,等.灰色系统理论及其应用.第2版[M].北京:科学出版社,1999.1-3.
[5] Fang Zhigeng,Liu Sifeng.Grey matrix model based on pure strategy [A].In:Dessouky Mohamed I,Heavey Cathal,eds.Proceedings of the 32nd International Conference on Computers & Industrial Engineering[C].Dublin,Ireland,2003.520-525.
[6] 方志耕,刘思峰.基于纯策略的灰矩阵二人有限零和博弈模型研究[J].南京航空航天大学学报,2003,35(4):441-445.
Fang Zhigeng,Liu Sifeng.Grey matrix game model based on pure strategy [J].Journal of Nanjing University of Aeronatics and Astrnautics, 2003,35(4):441-445.(in Chinese)
[7] 钱颂迪.运筹学.修订版[M].北京:清华大学出版社,1990.388-420.
[8] Voorneveld M.Pareto-optimal security strategies as minimax strategies of a standard matrix game [J].Journal of Optimization Theory and Applications, 1999,102(1):203-210.
[9] Lo Kin Chung.Nash equilibrium without mutual knowledge of rationality [J].Economic Theory, 1999(14):621-633.

## 相似文献/References:

[1]闫安,达庆利.2个企业同时博弈的动态古诺模型[J].东南大学学报(自然科学版),2006,36(4):672.[doi:10.3969/j.issn.1001-0505.2006.04.038]
Yan An,Da Qingli.Dynamical Cournot model with duopoly’s simultaneous-move game[J].Journal of Southeast University (Natural Science Edition),2006,36(6):672.[doi:10.3969/j.issn.1001-0505.2006.04.038]
[2]黄仁,时修荣,沙勇,等.磨削烧伤在线辨识的理论研究[J].东南大学学报(自然科学版),1988,18(2):1.[doi:10.3969/j.issn.1001-0505.1988.02.001]
Huang Ren Shi Xiuiong Sha Yong Sun Xiaoiun Su Guisheng (Department of Mechanical Engineering).A Theoretical Study of On-line Identification of the Grinding Burn[J].Journal of Southeast University (Natural Science Edition),1988,18(6):1.[doi:10.3969/j.issn.1001-0505.1988.02.001]