[1]庄哲民,黄惟一.机器人人工嗅觉系统设计[J].东南大学学报(自然科学版),2004,34(1):28-31.[doi:10.3969/j.issn.1001-0505.2004.01.007]
 Zhuang Zhemin,Huang Weiyi.Artificial olfactory system based on a telepresence robot[J].Journal of Southeast University (Natural Science Edition),2004,34(1):28-31.[doi:10.3969/j.issn.1001-0505.2004.01.007]
点击复制

机器人人工嗅觉系统设计()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
34
期数:
2004年第1期
页码:
28-31
栏目:
自动化
出版日期:
2004-01-20

文章信息/Info

Title:
Artificial olfactory system based on a telepresence robot
作者:
庄哲民1 黄惟一2
1 汕头大学电子工程系, 汕头 515063; 2 东南大学仪器科学与工程系, 南京 210096
Author(s):
Zhuang Zhemin1 Huang Weiyi2
1 Department of Electrical Engineering, Shantou University, Shantou 515063, China
2 Department of Instrument Science and Technology, Southeast University, Nanjing 210096, China
关键词:
气体传感器阵列 自组织特征映射 神经网络 人工嗅觉
Keywords:
gas sensor array self organizing map neural networks artificial olfactory system
分类号:
TP212
DOI:
10.3969/j.issn.1001-0505.2004.01.007
摘要:
利用半导体气体传感器的交叉敏特性,将气体传感器阵列与神经网络相结合,构建了一个用于临场感机器人的人工嗅觉系统,用于气体的定性识别.自组织神经网络(SOM)将被测气体的多维特征信息映射到一个二维平面上,从而实现了对被测气体的识别分类.实验结果表明半导体阵列人工嗅觉系统可以提高气体传感器的选择性,用SOM神经网络构建人工嗅觉识别模型是完全可行的.
Abstract:
By using the overlapping sensitivity of chemical gas sensors, an artificial olfactory system based on a telepresence robotic system, combing a chemical gas sensor array with self organizing map(SOM)neural networks, is constructed to qualitatively analyze chemical gases. SOM neural networks have the remarkable capability of transforming the hyperspace characteristics of input gas into a two dimensional map, consequently the gas can be discriminated. Experimental results show that the system increases the selectivity of gas sensors and the SOM neural network is feasible for gas discrimination.

参考文献/References:

[1] Davide F,Natale C Di,DAmico A.Self-organizing multisensor systems for odor classification:internal categorization,adaptation and drift rejection[J].Sensor and Actuators B,1994,18(1):244-258.
[2] Hanaki S,Nakamoto T,Moriizumi T.Artificial odor-recognition system using neural network for estimating sensory quantities of blended fragrance[J]. Sensor and Actuators A, 1996,57(1):65-71.
[3] Dauce E,Quoy M,Cessac B,et al.Self-organization and dynamics reduction in recurrent networks:stimulus presentation and learning [J]. Neural Networks, 1998,11(3):521-533.
[4] Lysetskiy M,Lozowski A,Zurada J.Invariant recognition of spatio-temporal patterns in the olfactory system model [J]. Neural Processing Letters,2002,15(3):225-234.
[5] Natale C Di,Macagnano A,D’Amico A,et al.Electronic-nose modelling and data analysis using a self-organizing map [J]. Measurement Science & Technology,1997,8(11):1236-1243.
[6] 曲建岭,王磊,杨建华,等.基于自组织特征映像网络的气体识别方法研究[J].测控技术,2000,19(3):6-8.
  Qu Jianling,Wang Lei,Yang Jianhua,et al.Research on method of gases recognition based on self organization feature mapping network [J].Measurement & Control Technology,2000,19(3):6-8.(in Chinese)

相似文献/References:

[1]马小辉,富煜清,陆佶人.结合SOFM失真的HMM语音识别方法[J].东南大学学报(自然科学版),1997,27(1):49.[doi:10.3969/j.issn.1001-0505.1997.01.010]
 [J].Journal of Southeast University (Natural Science Edition),1997,27(1):49.[doi:10.3969/j.issn.1001-0505.1997.01.010]

备注/Memo

备注/Memo:
作者简介: 庄哲民(1965—),男,博士,副教授,zmzhuang@stu.edu.cn.
更新日期/Last Update: 2004-01-20