[1]江宁强,宋文忠,戴先中.PEBS法理论中应用奇异摄动理论的必要条件[J].东南大学学报(自然科学版),2004,34(1):122-124.[doi:10.3969/j.issn.1001-0505.2004.01.029]
 Jiang Ningqiang,Song Wenzhong,Dai Xianzhong.Necessary conditions for invoking the singular perturbation theory in the theory of the PEBS method[J].Journal of Southeast University (Natural Science Edition),2004,34(1):122-124.[doi:10.3969/j.issn.1001-0505.2004.01.029]
点击复制

PEBS法理论中应用奇异摄动理论的必要条件()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
34
期数:
2004年第1期
页码:
122-124
栏目:
电气工程
出版日期:
2004-01-20

文章信息/Info

Title:
Necessary conditions for invoking the singular perturbation theory in the theory of the PEBS method
作者:
江宁强 宋文忠 戴先中
东南大学自动化研究所, 南京 210096
Author(s):
Jiang Ningqiang Song Wenzhong Dai Xianzhong
Research Institute of Automation, Southeast University, Nanjing 210096, China
关键词:
电力系统暂态稳定性 势能界面法 奇异摄动理论 完全稳定性
Keywords:
power system transient stability potential energy boundary surface method singular perturbation theory complete stability
分类号:
TM712
DOI:
10.3969/j.issn.1001-0505.2004.01.029
摘要:
分析了PEBS法理论中应用奇异摄动理论给电力系统带来的限制.对于有阻尼的电力系统,本文证明了频率偏差的各个分量必定有界.当摄动系统的发电机惯性时间常数趋向于零时,各频率分量也趋向于零.如果摄动系统的轨线一致收敛于退化系统的轨线,则退化系统的各轨线必收敛于平衡点,即退化系统完全稳定.由此得到电力系统应满足的2个必要条件,即摄动系统及其退化系统或广义梯度系统完全稳定.在使用该法时,应验证这2个条件,以保证分析的可靠性.
Abstract:
In the theory of the PEBS method, the singular perturbation theory is invoked. This places some restrictions on the power system under study. For damped system, the frequency deviance is bounded. When the inertia constant of the perturbed system is approaching zero, so is the frequency deviance. If trajectories of the perturbed system uniformly converge to trajectories of the degenerate system, then it is proved that trajectories of the degenerate system must converge. It implies the complete stability of the degenerate system. It is determined that for the power system to be analyzed by PEBS method, the perturbed system and the corresponding general gradient system should be completely stable. This result should be verified before this method is employed.

参考文献/References:

[1] Kakimoto N,Ohsawa Y,Hayashi M.Transient stability analysis of large-scale power systems by Liapunovs direct method [J].IEEE Trans Power App Syst,1948,103(1):160-167.
[2] Chiang H D,Wu F F,Varaiya P P.Foundations of the potential energy boundary surface method for power system transient stability analysis [J].IEEE Trans on Circuits and Systems,1988,35(6):712-728.
[3] Chiang H D,Chu Chiachi.Theoretical foundation of the BCU method for direct stability analysis of network-reduction power system models with small transfer conductance [J].IEEE Trans on Circuits and Systems,1995,42(5):252-265.
[4] 傅书逖.势能界面法综述 [J].电力系统自动化,1998,22(9):16-18.
  Fu Shuti.Summery and prospect of transient stability analysis using PEBS method [J].Automation of Electric Power Systems,1998,22(9):16-18.(in Chinese)
[5] Llamas A,De La Ree Lopez J,Mili L,et al.Clarifications of the BCU method for transient stability analysis [J].IEEE Trans on Power Systems,1995,10(1):210-219.
[6] Paganini F,Lesieutre B C.Generic properties,one-parameter deformations,and the BCU method [J].IEEE Trans on Circuits and Systems-1:Fundamental Theory and Applications,1999,46(6):760-763.
[7] Arapostathis A.Varaiya P.The behavior of three node power networks [J].Int J Elec Power Energy Syst,1983,5(1):22-30.
[8] Aropostathis A,Sastry S S,Varaiya P.Global analysis of swing dynamics [J].IEEE Trans on Circuits and Systems,1982,29(10):673-679.
[9] OMalley R E.Introduction to singular perturbations[M].New York:Academic Press,1974.77-95.

备注/Memo

备注/Memo:
基金项目: 国家杰出青年科学基金资助项目(59925718).
作者简介: 江宁强(1970—),男, 博士生,jiangningqiang@hotmail.com; 宋文忠(联系人),男,教授,博士生导师,songwz@seu.edu.cn.
更新日期/Last Update: 2004-01-20