# [1]陈华友,赵佳宝,刘春林.基于灰色关联度的组合预测模型的性质[J].东南大学学报(自然科学版),2004,34(1):130-134.[doi:10.3969/j.issn.1001-0505.2004.01.031] 　Chen Huayou,Zhao Jiabao,Liu Chunlin.Properties of combination forecasting model based on degree of grey incidence[J].Journal of Southeast University (Natural Science Edition),2004,34(1):130-134.[doi:10.3969/j.issn.1001-0505.2004.01.031] 点击复制 基于灰色关联度的组合预测模型的性质() 分享到： var jiathis_config = { data_track_clickback: true };

34

2004年第1期

130-134

2004-01-20

## 文章信息/Info

Title:
Properties of combination forecasting model based on degree of grey incidence

1 南京大学管理科学与工程研究院,南京 210093; 2 南京大学商学院, 南京 210093
Author(s):
1 Graduate School of Management Science and Engineering, Nanjing University, Nanjing 210093, China
2 Business School, Nanjing University, Nanjing 210093, China

Keywords:

O221.1
DOI:
10.3969/j.issn.1001-0505.2004.01.031

Abstract:
It is a new idea to study combination forecasting based on degree of grey incidence. Numerical examples have shown that it is a kind of effective combination forecasting method. In this paper, some new concepts are proposed, such as superior combination forecasting, dominant forecasting method, redundant degree, etc. Under certain conditions, it is proved that combination forecasting corresponding to the arbitrary feasible solution of this model is at least non-inferior. The sufficient conditions of existence of superior combination forecasting are also given. Finally the determining theorem of redundant forecasting method is proved, which is significant in extracting effective information in combination forecasting.

## 参考文献/References:

[1] Bates J M,Granger C W J.Combination of forecasts [J]. Operations Research Quarterly,1969,20(4):451-468.
[2] Bunn D W.Forecasting with more than one model [J]. Journal of Forecasting,1989, 8(3):161-166.
[3] Granger C W J.Combining forecasts — twenty years later [J]. Journal of Forecasting,1989,8(3):167-173.
[4] Min C K,Arnold Z.Bayesian and non-Bayesian methods for combining models and forecasts with applications to forecasting international growth rate [J].Journal of Econometrics,1993,56(1):89-118.
[5] Donaldson R G,Kamstra M.Forecast combining with neural networks [J]. Journal of Forecasting,1996,15(1):49-61.
[6] 唐小我.组合预测误差信息矩阵研究[J].电子科技大学学报,1992,21(4):448-454.
Tang Xiaowo.Study of combination forecasting error information matrix[J]. Journal of University of Electronic Science and Technology of China,1992,21(4):448-454.(in Chinese)
[7] 马永开,唐小我,杨桂元.非负权重最优组合预测方法的基本理论研究[J].运筹与管理,1997,6(2):1-8.
Ma Yongkai,Tang Xiaowo,Yang Guiyuan.Study on basic theory of the optimal combined prediction method of non-negative weights[J]. Operations Research and Management Science, 1997,6(2):1-8.(in Chinese)
[8] 陈华友.基于预测有效度的组合预测模型研究[J].预测,2001,20(3):72-73.
Chen Huayou.Research on combination forecasting model based on effective measure of forecasting methods[J]. Forecasting,2001,20(3):72-73.(in Chinese)
[9] 陈华友,侯定丕.基于预测有效度的优性组合预测模型的研究[J].中国科学技术大学学报,2002,32(2):172-180.
Chen Huayou,Hou Dingpi.Research on superior combination forecasting model based on forecasting effective measure[J]. Journal of University of Science and Technology of China,2002,32(2):172-180.(in Chinese)
[10] 王应明.基于相关性的组合预测方法研究[J].预测,2002,21(2):58-62.
Wang Yingming.Research on the methods of combining forecasts based on correlativity [J]. Forecasting,2002,21(2):58-62.(in Chinese)
[11] 唐小我.经济预测与决策新方法及其应用研究[M].成都:电子科技大学出版社,1997.9-57.
[12] 邓聚龙.灰理论基础[M].武汉:华中科技大学出版社,2002.122-209.

## 相似文献/References:

[1]陈华友.基于L1范数的加权几何平均组合预测模型的性质[J].东南大学学报(自然科学版),2004,34(4):535.[doi:10.3969/j.issn.1001-0505.2004.04.025]
Chen Huayou,Liu Chunlin.Properties of weighted geometric means combination forecasting model based on L1 norm[J].Journal of Southeast University (Natural Science Edition),2004,34(1):535.[doi:10.3969/j.issn.1001-0505.2004.04.025]
[2]何永勇,贾民平,钟秉林,等.基于模糊关联度的旋转机械故障多参数诊断[J].东南大学学报(自然科学版),1995,25(5):73.[doi:10.3969/j.issn.1001-0505.1995.05.013]
He Yongyong,Jia,Miriping,et al.Multi-parameter Fault Diagilosis Based on Fuzzy RelationalDegree for Rotating Machine[J].Journal of Southeast University (Natural Science Edition),1995,25(1):73.[doi:10.3969/j.issn.1001-0505.1995.05.013]