[1]陆建江,徐宝文.挖掘典型的语言值关联规则[J].东南大学学报(自然科学版),2004,34(3):318-321.[doi:10.3969/j.issn.1001-0505.2004.03.008]
 Lu Jianjiang,Xu Baowen.Mining typical association rules with linguistic terms[J].Journal of Southeast University (Natural Science Edition),2004,34(3):318-321.[doi:10.3969/j.issn.1001-0505.2004.03.008]
点击复制

挖掘典型的语言值关联规则()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
34
期数:
2004年第3期
页码:
318-321
栏目:
自动化
出版日期:
2004-05-20

文章信息/Info

Title:
Mining typical association rules with linguistic terms
作者:
陆建江 徐宝文
东南大学计算机科学与工程系, 南京 210096; 江苏省软件质量研究所,南京 210096
Author(s):
Lu Jianjiang Xu Baowen
Department of Computer Science and Engineering, Southeast University, Nanjing 210096, China
Jiangsu Institute of Software Quality, Nanjing 210096, China
关键词:
数据挖掘 语言值 关联规则c-原型算法
Keywords:
data mining linguistic terms association rules hard c-medoids algorithm
分类号:
TP18
DOI:
10.3969/j.issn.1001-0505.2004.03.008
摘要:
通过给定的最小支持率和最小信任度来挖掘语言值关联规则往往会得到很多规则,因此用户很难获得真正关注的语言值关联规则.本文提出一种挖掘典型语言值关联规则的算法,此算法将挖掘得到的语言值关联规则按照相同的后件进行分组,然后对每个分组中的语言值关联规则根据规则之间的不相似性进行聚类.最后从每个类中挑选出代表类原型的语言值关联规则作为典型的语言值关联规则.典型的语言值关联规则是语言值关联规则集合中最具有代表意义的规则.
Abstract:
Using the given minimum support and minimum confidence, a large set of association rules with linguistic terms can be discovered and therefore it is difficult for the users to obtain the most interesting ones. An algorithm for mining typical association rules with linguistic terms is presented. In this algorithm, the mined association rules with linguistic terms are grouped by the same consequent, and the association rules with linguistic terms in each sub-group are clustered by the dissimilarity between the rules. The association rules with respect to the medoids are selected as the typical association rules with linguistic terms. These typical association rules with linguistic terms are the most representative rules in the set of association rules with linguistic terms.

参考文献/References:

[1] Agrawal R,Srikant R.Fast algorithms for mining association rules [A].In:Proceedings of the 1994 International Conference on Very Large Databases [C].Santiago,1994.487-499.
[2] Srikant R,Agrawal R.Mining quantitative association rules in large relational tables [A].In:Proceedings of the ACM-SIGMOD Conference on Management of Data [C].Montreal,1996.1-12.
[3] Chan M K,Ada F,Man H W.Mining fuzzy association rules in database [A].In:Proceedings of the ACM Sixth International Conf on Information and Knowledge Management [C].Las Vegas,1997.10-14.
[4] 陆建江,宋自林,钱祖平.挖掘语言值关联规则[J].软件学报,2001,12(4):607-611.
  Lu Jianjiang,Song Zilin,Qian Zuping.Mining linguistic valued association rules[J].Journal of Software,2001,12(124): 607-611.(in Chinese)
[5] 邹晓峰,陆建江,宋自林.语言值关联规则挖掘算法[J].系统仿真学报,2002,14(9):1130-1132.
  Zou Xiaofeng,Lu Jianjiang,Song Zilin.Mining linguistic valued association rules[J]. Journal of System Simulation, 2002,14(9):1130-1132.(in Chinese)
[6] Hathaway R J,Davenport J W,Bezdek J C.Relational dual of the c-means algorithms [J]. Pattern Recognition, 1989,22(2):205-212.
[7] Krishnapuram R,Joshi A,Yi L.A fuzzy relative of the k-medoids algorithm with application to Web document and snippet clustering [A].In:Proceedings IEEE Intl Conference Fuzzy Systems [C].Korea,1999.1281-1286.

相似文献/References:

[1]赵传申,孙志挥.半结构化文档数据流的快速频繁模式挖掘[J].东南大学学报(自然科学版),2006,36(3):452.[doi:10.3969/j.issn.1001-0505.2006.03.025]
 Zhao Chuanshen,Sun Zhihui.Fast mining frequent patterns in semi-structured data stream[J].Journal of Southeast University (Natural Science Edition),2006,36(3):452.[doi:10.3969/j.issn.1001-0505.2006.03.025]
[2]陆建江,徐宝文,邹晓峰,等.模糊关联规则的并行挖掘算法[J].东南大学学报(自然科学版),2005,35(2):165.[doi:10.3969/j.issn.1001-0505.2005.02.001]
 Lu Jianjiang,Xu Baowen,Zou Xiaofeng,et al.Parallel mining algorithm for fuzzy association rules[J].Journal of Southeast University (Natural Science Edition),2005,35(3):165.[doi:10.3969/j.issn.1001-0505.2005.02.001]
[3]丁艺明,金远平.一种基于记录分区的多值关联规则挖掘算法[J].东南大学学报(自然科学版),2000,30(2):6.[doi:10.3969/j.issn.1001-0505.2000.02.002]
 Ding Yiming,Jin Yuanping.A Record Partition Based Algorithm for Mining Quantitative Association Rules[J].Journal of Southeast University (Natural Science Edition),2000,30(3):6.[doi:10.3969/j.issn.1001-0505.2000.02.002]
[4]朱慧云,陈森发,张丽杰.动态环境下多个时期的客户购物模式变化挖掘[J].东南大学学报(自然科学版),2012,42(5):1012.[doi:10.3969/j.issn.1001-0505.2012.05.038]
 Zhu Huiyun,Chen Senfa,Zhang Lijie.Change mining of customer shopping patterns from multi-period datasets under dynamic environment[J].Journal of Southeast University (Natural Science Edition),2012,42(3):1012.[doi:10.3969/j.issn.1001-0505.2012.05.038]
[5]陆介平,刘月波,倪巍伟,等.基于PrefixSpan的快速交互序列模式挖掘算法[J].东南大学学报(自然科学版),2005,35(5):692.[doi:10.3969/j.issn.1001-0505.2005.05.008]
 Lu Jieping,Liu Yuebo,Ni Weiwei,et al.Fast interactive sequential pattern mining algorithm based on PrefixSpan[J].Journal of Southeast University (Natural Science Edition),2005,35(3):692.[doi:10.3969/j.issn.1001-0505.2005.05.008]
[6]张净,孙志挥.GDLOF:基于网格和稠密单元的快速局部离群点探测算法[J].东南大学学报(自然科学版),2005,35(6):863.[doi:10.3969/j.issn.1001-0505.2005.06.007]
 Zhang Jing,Sun Zhihui.GDLOF: fast local outlier detection algorithm with grid-based and dense cell[J].Journal of Southeast University (Natural Science Edition),2005,35(3):863.[doi:10.3969/j.issn.1001-0505.2005.06.007]
[7]杨明,孙志挥,吉根林.一种基于分布式数据库的全局频繁项目集更新算法[J].东南大学学报(自然科学版),2002,32(6):879.[doi:10.3969/j.issn.1001-0505.2002.06.012]
 Yang Ming,Sun Zhihui,Ji Genlin.Algorithm based on distributed database for updating global frequent itemsets[J].Journal of Southeast University (Natural Science Edition),2002,32(3):879.[doi:10.3969/j.issn.1001-0505.2002.06.012]
[8]陈岭,陈元中,陈根才.基于操作序列挖掘的OLAP查询推荐方法[J].东南大学学报(自然科学版),2011,41(3):498.[doi:10.3969/j.issn.1001-0505.2011.03.013]
 Chen Ling,Chen Yuanzhong,Chen Gencai.Operation sequence mining based OLAP query recommendation method[J].Journal of Southeast University (Natural Science Edition),2011,41(3):498.[doi:10.3969/j.issn.1001-0505.2011.03.013]
[9]胡孔法,唐小丽,达庆利,等.一种高效挖掘高维数据的频繁闭合模式算法[J].东南大学学报(自然科学版),2007,37(4):569.[doi:10.3969/j.issn.1001-0505.2007.04.005]
 Hu Kongfa,Tang Xiaoli,Da Qingli,et al.Efficient algorithm for frequent closed patterns mining from high dimensional data[J].Journal of Southeast University (Natural Science Edition),2007,37(3):569.[doi:10.3969/j.issn.1001-0505.2007.04.005]
[10]龚振志,胡孔法,达庆利,等.DMGSP:一种快速分布式全局序列模式挖掘算法[J].东南大学学报(自然科学版),2007,37(4):574.[doi:10.3969/j.issn.1001-0505.2007.04.006]
 Gong Zhenzhi,Hu Kongfa,Da Qingli,et al.DMGSP: an algorithm of distributed mining global sequential pattern on distributed system[J].Journal of Southeast University (Natural Science Edition),2007,37(3):574.[doi:10.3969/j.issn.1001-0505.2007.04.006]

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金青年科学基金资助项目(60303024)、国家自然科学基金资助项目(60073012)、教育部博士点基金资助项目、江苏省计算机信息处理技术重点实验室(苏州大学)开放基金资助项目.
作者简介: 陆建江(1968—),男,博士,副教授,jjlu@seu.edu.cn.
更新日期/Last Update: 2004-05-20