[1]杨明,倪魏伟,孙志挥.一种新颖的最小属性约简模型[J].东南大学学报(自然科学版),2004,34(5):604-608.[doi:10.3969/j.issn.1001-0505.2004.05.010]
 Yang Ming,Ni Weiwei,Sun Zhihui.Novel model for minimal attributes reductions[J].Journal of Southeast University (Natural Science Edition),2004,34(5):604-608.[doi:10.3969/j.issn.1001-0505.2004.05.010]
点击复制

一种新颖的最小属性约简模型()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
34
期数:
2004年第5期
页码:
604-608
栏目:
计算机科学与工程
出版日期:
2004-09-20

文章信息/Info

Title:
Novel model for minimal attributes reductions
作者:
杨明12 倪魏伟2 孙志挥2
1 安徽工程科技学院计算机科学与工程系, 芜湖 241000; 2 东南大学计算机科学与工程系, 南京 210096
Author(s):
Yang Ming12 Ni Weiwei2 Sun Zhihui2
1 Department of Computer Science and Engineering, Anhui University of Technology and Science, Wuhu 241000, China
2 Department of Computer Science and Engineering, Southeast University, Nanjing 210096, China
关键词:
粗集 属性约简 分类关联规则
Keywords:
rough set attribute reduction classified association rules
分类号:
TP311
DOI:
10.3969/j.issn.1001-0505.2004.05.010
摘要:
传统的基于粗集的属性约简须计算差别矩阵并生成大量的条件属性类,效率低,且很多算法还不完备.为此,本文引入分类关联规则和相容分类关联规则的概念,给出基于分类关联规则的求解下近似和正区域的等价方法,从而提出基于分类关联规则的属性约简模型和算法,该模型将属性约简问题转化为求解一类特殊的分类关联规则集的问题,因而使得相应的算法可有效地改进属性约简挖掘效率, 克服传统算法依赖于主存的限制,为属性约简提供了一种新的框架.理论分析表明该算法是有效且可行的.
Abstract:
Conventional algorithms for attributes reduction based on rough sets need to compute the time-consuming discernibility matrix and generate lots of attribute classes, thus they are of low efficiency. Moreover, many algorithms are incomplete. In this paper, the concepts of classified association rules and compatible classified association rules are introduced, and equivalent models based on classified association rules for computing lower approximation and positive region are proposed. Furthermore, this paper gives a novel model and a complete algorithm —— EAMAR(efficient algorithm for minimal attributes reduction)for attributes reduction. The model only needs to mine a set of special classified association rules instead of generating lots of attribute classes, so it can effectively overcome the limitation of main memory and solve the problem of time consuming. Therefore, EAMAR provides a new framework for attributes reduction. Theoretical analysis results show that EAMAR is effective and efficient.

参考文献/References:

[1] Pawlak Z.Rough sets [J].International Journal of Information and Computer Science, 1982,11(5):341-356.
[2] Pawlak Z. Rough sets:theoretical aspects of reasoning about data [M].Dordrecht:Kluwer Academic Publishers.1991.1-40.
[3] Tsumoto S.Automated discovery of positive and negative knowledge in clinical databases [J]. IEEE Engineering in Medicine and Biology Magazine, 2000,19(4):56-62.
[4] Skowron A,Rauszer C.Slowinski R.Intelligent decision support handbook of applications and advances of the rough sets theory [M].Dordrecht:Kluwer Academic Publishers,1992.331-362.
[5] Hu X H,Cercone N.Learning in relational databases:a rough set approach [J]. International Journal of Computational Intelligence, 1995,11(2):323-338.
[6] Jelonek J,Krawiec K,Slowinski R,et al.Rough set reduction of attributes and their domains for neural networks [J]. Computational Intelligence, 1995,11(2):339-347.
[7] 苗夺谦,胡桂荣.知识约简的一种启发式算法 [J].计算机研究与发展,1998,36(6):681-684.
  Miao Duoqian,Hu Guirong.A heuristic algorithm for reduction of knowledge [J]. Computer Research and Development,1998,36(6):681-684.(in Chinese)
[8] Wang Jue,Wang Ju.Reduction algorithm based on discernibility matrix the ordered attributes method [J]. Journal of Computer Science & Technology,2001,16(6):489-504.
[9] Woblewski J.Finding minimal reducts using genetic algorithms [A].In:Wang P P,ed.Proceedings of the International Workshop on Rough Sets Soft Computing at Second Annual Joint Conference on Information Sciences(JCIS’95)[C].Wrightsville Beach,North Carolina,USA,1995.186-189.
[10] Guan J W,Bell D A.Rough computational methods for information systems [J]. Artificial Intelligences, 1998,105(1-2):77-103.
[11] 刘少挥,盛秋戬,吴斌,等.Rough集高效算法的研究.计算机学报,2003,26(5):524-529.
  Liu Shaohui,Sheng Qiujian,Wu Bin,et al.Research on efficient algorithms for rough set methods [J]. Chinese Journal of Computers, 2003,26(5):524-529.(in Chinese)
[12] Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases [A].In:Proc of the ACM SIGMOD International Conference on Management of Data[C].Washington,USA,1993.207-216.
[13] Agrawal R,Srikant R.Fast algorithms for mining association rules [A].In:Proceedings of the 20th International Conference Very Large Data Bases(VLDB’94)[C].Santiago,Chile,1994.487-499.
[14] 杨明,孙志挥.一种基于前缀广义表的关联规则增量式更新算法[J].计算机学报,2003,26(10):1318-1325.
  Yang Ming,Sun Zhihui.An incremental updating algorithm based on prefix general list for association rules [J].Chinese Journal of Computers, 2003,26(10):1318-1325.(in Chinese)
[15] Daniel D,Hans J L,Mattis N.Improving the quality of association rule mining by means of rough sets [A].In:First International Workshop on Soft Methods in Probability and Statistics SMPS 2002[C].Warsaw,2002.1-8.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金资助项目(70371015)、安徽省自然科学基金资助项目(03042205).
作者简介: 杨明(1964—),男,博士,教授,yangm_163@163.com.
更新日期/Last Update: 2004-09-20