[1]尚文,马旭东,戴先中.融合多传感器信息的移动机器人自定位方法[J].东南大学学报(自然科学版),2004,34(6):784-788.[doi:10.3969/j.issn.1001-0505.2004.06.015]
 Shang Wen,Ma Xudong,Dai Xianzhong.Mobile robot self-localization based-on multi-sensory information fusion[J].Journal of Southeast University (Natural Science Edition),2004,34(6):784-788.[doi:10.3969/j.issn.1001-0505.2004.06.015]
点击复制

融合多传感器信息的移动机器人自定位方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
34
期数:
2004年第6期
页码:
784-788
栏目:
自动化
出版日期:
2004-11-20

文章信息/Info

Title:
Mobile robot self-localization based-on multi-sensory information fusion
作者:
尚文 马旭东 戴先中
东南大学自动控制系, 南京 210096
Author(s):
Shang Wen Ma Xudong Dai Xianzhong
Department of Automatic Control Engineering, Southeast University, Nanjing 210096, China
关键词:
移动机器人 Markov定位 EKF 融合
Keywords:
mobile robot Markov localization EKF fusion
分类号:
TP24
DOI:
10.3969/j.issn.1001-0505.2004.06.015
摘要:
提出一种给定环境模型下移动机器人全局自定位算法,通过融合声纳传感器和视觉传感器的异质传感信息把具有多模态、鲁棒性强的Markov方法和单模态、高效准确的EKF方法组合应用并加以改进,来实现准确和快速的全局定位,同时提高位姿跟踪的准确性.Markov方法中位姿空间的低分辨率离散减小了存储需求,声纳感知模型对位姿空间分布进行初始化并提供了全局的位姿假设,视觉感知模型实现了位姿分布更新,而基于视觉特征的EKF方法则提高了定位的精度.实验结果验证了本方法的有效性.
Abstract:
A computation method is proposed for global localization which utilizes information from both sonar and vision sensors. The method combines multimodal, robust Markov and unimodal, efficient extended Kalman filter(EKF)localization with significant improvements for global localization and position tracking. In Markov localization, memory requirements are reduced with low-resolution discretization of pose space. The pose space distribution is initialized and pose hypotheses are acquired through sonar sensor model, and sensor update is accomplished through visual sensor model. Then vision-based EKF is utilized for localization precision. Experimental results demonstrate the validity of the approach.

参考文献/References:

[1] Borenstein J, Everett H R,Feng L. Navigating mobile robots:systems and techniques [M].Wellesley,Mass:AK Peters,1996.130-217.
[2] Chenavier F,Crowley J L.Position estimation for a mobile robot using vision and odometry [A].In:Proc of IEEE International Conf on Robotics and Automation [C].Nice,France,1992.2588-2593.
[3] Fox D,Burgard W,Thrun S.Markov localization for mobile robots in dynamic environments [J]. Journal of Artificial Intelligence Research, 1999,11:391-427.
[4] Kaelbling L, Cassandra A,Kurien J.Acting under uncertainty:discrete Bayesian models for mobile-robot navigation[A].In:Proc of IEEE International Conf on Intelligent Robots and Systems [C].Osaka,Japan,1996.963-972.
[5] Gutmann J S, Brugard W,Fox D.An experimental comparison of localization methods [A].In:Proc of IEEE International Conf on Intelligent Robots and Systems[C].Victoria,Canada,1998.736-743.
[6] Crowley J L. World modeling and position estimation for a mobile robot using ultrasonic ranging [A].In: Proc of IEEE International Conf on Robotics and Automation[C].Scottsdale,USA,1989.674-680.
[7] Forsberg J, Larsson U,Wernersson A.Mobile robot navigation using the range-weighted Hough transform[J].IEEE Robotics & Automation Magazine,1995,2(1):18-26.
[8] Drumheller M. Mobile robot localization using sonar [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,9(2):325-332.
[9] Krotkov E.Mobile robot localization using a single image [A].In: Proc of IEEE International Conf on Robotics and Automation [C].Scottsdale,USA,1989.978-983.
[10] Lowe D G. Three-dimensional object recognition from single two-dimensional images[J].Artificial Intelligence,1987,31:355-395.
[11] Sarkar S,Boyer K L.Integration,inference,and management of spatial information using Bayesian networks:perceptual organization [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(3):256-273.
[12] Pearl J. Probabilistic reasoning in intelligent systems:networks of plausible inference [M].San Mateo,California:Morgan Kaufmann,1988.116-233.

相似文献/References:

[1]涂刚毅,金世俊,祝雪芬,等.基于粒子滤波的移动机器人SLAM算法[J].东南大学学报(自然科学版),2010,40(1):117.[doi:10.3969/j.issn.1001-0505.2010.01.022]
 Tu Gangyi,Jin Shijun,Zhu Xuefen,et al.Particle filter SLAM method for mobile robot[J].Journal of Southeast University (Natural Science Edition),2010,40(6):117.[doi:10.3969/j.issn.1001-0505.2010.01.022]
[2]房芳,马旭东,戴先中.一种新的移动机器人Monte Carlo自主定位算法[J].东南大学学报(自然科学版),2007,37(1):40.[doi:10.3969/j.issn.1001-0505.2007.01.010]
 Fang Fang,Ma Xudong,Dai Xianzhong.New Monte Carlo algorithm for mobile robot self-localization[J].Journal of Southeast University (Natural Science Edition),2007,37(6):40.[doi:10.3969/j.issn.1001-0505.2007.01.010]
[3]周波,戴先中.基于SR-UKF的移动机器人主动故障检测和容错控制[J].东南大学学报(自然科学版),2011,41(5):1002.[doi:10.3969/j.issn.1001-0505.2011.05.021]
 Zhou Bo,Dai Xianzhong.SR-UKF based active fault detection and tolerant control of mobile robots[J].Journal of Southeast University (Natural Science Edition),2011,41(6):1002.[doi:10.3969/j.issn.1001-0505.2011.05.021]
[4]房芳,马旭东,戴先中.基于混合模型的移动机器人同时定位与环境建模[J].东南大学学报(自然科学版),2009,39(5):923.[doi:10.3969/j.issn.1001-0505.2009.05.011]
 Fang Fang,Ma Xudong,Dai Xianzhong.Mixed-model based simultaneous localization and mapping approach for mobile robot[J].Journal of Southeast University (Natural Science Edition),2009,39(6):923.[doi:10.3969/j.issn.1001-0505.2009.05.011]
[5]周波,樊帅权,戴先中.基于集员滤波的移动机器人动态环境建模[J].东南大学学报(自然科学版),2011,41(1):107.[doi:10.3969/j.issn.1001-0505.2011.01.021]
 Zhou Bo,Fan Shuaiquan,Dai Xianzhong.Dynamic environment modeling of mobile robots based on set membership filter[J].Journal of Southeast University (Natural Science Edition),2011,41(6):107.[doi:10.3969/j.issn.1001-0505.2011.01.021]
[6]李新德,金晓彬,张秀龙,等.一种基于BoW物体识别模型的视觉导航方法[J].东南大学学报(自然科学版),2012,42(3):393.[doi:10.3969/j.issn.1001-0505.2012.03.001]
 Li Xinde,Jin Xiaobin,Zhang Xiulong,et al.Visual navigation method based on BoW object recognition model[J].Journal of Southeast University (Natural Science Edition),2012,42(6):393.[doi:10.3969/j.issn.1001-0505.2012.03.001]

备注/Memo

备注/Memo:
基金项目: 国家重点基础研究发展计划(973计划)资助项目(2002CB312200)、国家高技术研究发展计划(863计划)资助项目(2002AA420110).
作者简介: 尚文(1978—),女,博士生; 马旭东(联系人),男,教授,xdma@seu.edu.cn.
更新日期/Last Update: 2004-11-20