# [1]张永春,达飞鹏,宋文忠.基于一种曲率最小优化准则的散乱点三角剖分[J].东南大学学报(自然科学版),2004,34(6):851-856.[doi:10.3969/j.issn.1001-0505.2004.06.030] 　Zhang Yongchun,Da Feipeng,Song Wenzhong.Triangulations based on a criterion of minimized curvature for scattered point-sets[J].Journal of Southeast University (Natural Science Edition),2004,34(6):851-856.[doi:10.3969/j.issn.1001-0505.2004.06.030] 点击复制 基于一种曲率最小优化准则的散乱点三角剖分() 分享到： var jiathis_config = { data_track_clickback: true };

34

2004年第6期

851-856

2004-11-20

## 文章信息/Info

Title:
Triangulations based on a criterion of minimized curvature for scattered point-sets

Author(s):
Research Institute of Automation, Southeast University, Nanjing 210096, China

Keywords:

TP391.72
DOI:
10.3969/j.issn.1001-0505.2004.06.030

Abstract:
An algorithm to estimate the curvature of a quadrilateral is presented. And a new algorithm of triangulation based on the criterion of minimizing this curvature is proposed. Some commonly used data structures are improved in the algorithm to reduce the space complexity. The time and space complexities of the algorithm are analyzed in detail. It is proved that the time complexity is O(m2). Comparisons between minimal curvature criterion and other criteria are concisely enunciated. Finally, two typical examples are given and the results indicate that the property of shape-preserving is obtained with the algorithm. This triangulation algorithm is of practical value for surface reconstructions and surface designs.

## 参考文献/References:

[1] Lawson C L.C1 surface interpolation for scattered data on a sphere [J]. Rocky Mount J Math,1984,14(1):223-237.
[2] 周儒荣,张丽艳,苏旭,等.海量散乱点的曲面重建算法研究[J].软件学报,2001,12(2):249-255.
Zhou Rurong,Zhang Liyan,Su Xu,et al.Algorithmic research on surface reconstruction from dense scattered points[J]. Journal of Software, 2001,12(2):249-255.(in Chinese)
[3] Choi B K,Shin H Y,Yoon Y I,et al.Triangulation of scattered data in 3D space[J].Computer Aided Design, 1988,20(5):239-248.
[4] 姜寿山,杨海成,侯增选.用空间形状优化准则完成散乱数据的三角剖分[J].计算机辅助设计与图形学学报,1995,7(4):241-249.
Jiang Shoushan,Yang Haicheng,Hou Zengxuan.The triangulation of 3D scattered data with a space shape optimal criterion [J].China Journal of CAD and CG, 1995,7(4):241-249.(in Chinese)
[5] 柯映林,周儒荣.实现3D离散点优化三角剖分的三维算法[J].计算机辅助设计与图形学学报,1994,6(4):241-248.
Ke Yinglin,Zhou Rurong.A new triangulation algorithm for 3D scattered points[J]. China Journal of CAD and CG, 1994,6(4):241-248.(in Chinese)
[6] Dyn N,Levin D,Rippa S.Data dependent triangulations for piecewise linear interpolation [J]. Journal of Numerical Analysis, 1990, 10(1):137-154.
[7] Alboul L,Kloosterman G,Traas C,et al.Best data-dependent triangulations[J]. Journal of Computational and Applied Mathematics, 2000,119(1):1-12.
[8] 张永春,达飞鹏,宋文忠.三维散乱点集的曲面三角剖分[J].中国图象图形学报,2003,8(12):1379-1388.
Zhang Yongchun,Da Feipeng,Song Wenzhong.Surface triangulations based on 3D arbitrary point-sets [J]. Journal of Image and Graphics, 2003,8(12):1379-1388.(in Chinese)
[9] Koppel E.Approximating complex surfaces by triangulation of contour lines [J].IBM Journal of Research and Development, 1975,2:21-22.
[10] Cormen T, Leiserson C,Rivest R. Introduction to algorithms. 2nd Ed [M].The MIT Press,2002.21-23,149-155,204-209.
[11] Chen J. Computational geometry:methods and applications [M].Texas A & M University Press,1996.3-5.