# [1]裴凤,周建华.Lie color 代数的商代数[J].东南大学学报(自然科学版),2004,34(6):865-868.[doi:10.3969/j.issn.1001-0505.2004.06.033] 　Pei Feng,Zhou Jianhua.Algebras of quotients of Lie color algebras[J].Journal of Southeast University (Natural Science Edition),2004,34(6):865-868.[doi:10.3969/j.issn.1001-0505.2004.06.033] 点击复制 Lie color 代数的商代数() 分享到： var jiathis_config = { data_track_clickback: true };

34

2004年第6期

865-868

2004-11-20

## 文章信息/Info

Title:
Algebras of quotients of Lie color algebras

Author(s):
Department of Mathematics, Southeast University, Nanjing 210096, China

Keywords:

O153.5
DOI:
10.3969/j.issn.1001-0505.2004.06.033

Abstract:
Some properties of Lie color algebra, such as semiprimeness, primeness and nondegeneracy are introduced. The notions of algebra of quotients and weak algebra of quotients of Lie color algebras are given. The semiprimeness and primeness are lifted from a Lie color algebra to its algebras of quotients. It is shown that if L is a subgroup of a Lie color algebra Q, then Q is an algebra of quotients of L if and only if Q is ideally absorbed into L. For every semiprime Lie color algebra, a maximal algebra of quotients is constructed.

## 参考文献/References:

[1] Utumi Y.On quotient rings [J]. Osaka J Math,1956,8:1-18.
[2] Molina N S.Algebras of quotients of Lie algebras [J]. J Pure and Applied Algebra, 2004,188:175-188.
[3] Scheunert M.Generalized Lie algebras [J].J Math Phys,1979,20(4):712-720.
[4] Passman D S.Simple Lie color algebras of Witt type [J]. J Algebra, 1998,208:698-721.

## 相似文献/References:

[1]裴凤,周建华.代数的交叉模[J].东南大学学报(自然科学版),2007,37(6):1137.[doi:10.3969/j.issn.1001-0505.2007.06.039]
Pei Feng,Zhou Jianhua.Crossed modules for Lie color algebras[J].Journal of Southeast University (Natural Science Edition),2007,37(6):1137.[doi:10.3969/j.issn.1001-0505.2007.06.039]