[1]李少冬,杨明,孙志挥,等.一种基于关联挖掘的缺省规则更新算法[J].东南大学学报(自然科学版),2005,35(2):178-182.[doi:10.3969/j.issn.1001-0505.2005.02.003]
 Li Shaodong,Yang Ming,Sun Zhihui,et al.Incremental algorithm based on association mining for default rules[J].Journal of Southeast University (Natural Science Edition),2005,35(2):178-182.[doi:10.3969/j.issn.1001-0505.2005.02.003]
点击复制

一种基于关联挖掘的缺省规则更新算法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
35
期数:
2005年第2期
页码:
178-182
栏目:
计算机科学与工程
出版日期:
2005-03-20

文章信息/Info

Title:
Incremental algorithm based on association mining for default rules
作者:
李少冬1 杨明2 孙志挥2 仲伟俊1
1 东南大学经济管理学院, 南京 210096; 2 东南大学计算机科学与工程系, 南京 210096
Author(s):
Li Shaodong1 Yang Ming2 Sun Zhihui2 Zhong Weijun1
1 College of Economics and Management, Southeast University, Nanjing 210096, China
2 Department of Computer Science and Engineering, Southeast University, Nanjing 210096, China
关键词:
缺省规则 关联规则 相容关联规则 增量式
Keywords:
default rules association rules compatible association rules incremental
分类号:
TP311
DOI:
10.3969/j.issn.1001-0505.2005.02.003
摘要:
为了解决缺省关联规则的增量挖掘问题,在算法DRMBAR的基础上,结合粗糙集理论及频繁模式树结构,提出了一种基于关联规则的缺省规则更新算法IADRBAR,该算法主要考虑最小支持度发生变化时缺省规则的更新问题,即在新的最小支持度下,如何高效地生成新的关联规则. IADRBAR在最坏的情况下仅须扫描决策表一遍,并利用上一次已经挖掘出的频繁项目集及关联规则,有效地提高缺省规则的更新效率.理论分析和实验结果表明算法是有效可行的.
Abstract:
For efficiently mining default rules, a novel algorithm based on association rules, DRMBAR(default rules mining based on association rules), is proposed using FP-tree(frequent pattern tree)structure. In this paper, incremental mining of default rules is addressing. Algorithm IADRBAR(incremental algorithm of default rules based on association rules)is proposed, which is based on association rules and the rough set theory. It mainly solves the problem of incremental updating of default rules when minimum support measure threshold is dynamically adjusted. In the worst case, IADRBAR only needs to scan the decision table once by utilizing the frequent item sets and association rules which have been obtained during the last round. Thus, IADRBAR can greatly improve incremental updating efficiency of default rules. Theoretical analysis and experimental results show that IADRBAR is efficient and effective.

参考文献/References:

[1] Pawlak Z.Rough sets [J].International Journal of Information and Computer Science, 1982,11(5):341-356.
[2] Mollestad T,Skowron A.A rough set framework for data mining of prepositional default rules[A].In:The 9th International Symposium on Foundation of Intelligent System[C].Poland,1996.448-457.
[3] 尹旭日,陈世福.一种基于Rough集的缺省规则挖掘算法[J].计算机研究与发展,2000,37(12):1441-1445.
  Yin Xuri,Chen Shifu.An algorithm based on rough set for mining default rules[J]. Journal of Computer Research & Development,2000,37(12):1441-1445.(in Chinese)
[4] Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large database[A].In: Proceeding of the ACM SIGMOD International Conference on Management of Data[C].Washington DC,1993.207-216.
[5] Han J W,Pei J,Yin Y.Mining frequent patterns without candidate generation[A].In:Proceedings of the ACM SIGMOD International Conference on Management of Data[C].Dallas,USA,2000.1-12.
[6] Bayardo R J.Brute-force mining of high confidence classification rules[A].In: Proceedings of 3rd International Conference on Knowledge Discovery and Data Mining[C].Newport Beach,California,1997.123-126.
[7] Liu B,Hsu W,Ma Y M.Integrating classification and association rule mining[A].In: Proceedings of 4th Intern-ational Conference on Knowledge Discovery and Data Mining[C].New York,1998.80-86.
[8] 杨明,杨萍,吉根林,等.一种基于关联规则的缺省规则挖掘算法 [J].东南大学学报(自然科学版)2003,33(6):689-693.
  Yang Ming,Yang Ping,Ji Genlin,et al.Algorithm for mining default decision rules based on association rules[J].Journal of Southeast University(Natural Science Edition),2003,33(6):689-693.(in Chinese)
[9] 杨明,孙志挥,宋余庆,等.频繁项目集的快速增量式更新算法 [J].应用科学学报,2003,21(4):367-372.
  Yang Ming,Sun Zhihui,Song Yuqing,et al.Fast incremental updating of frequent item sets[J].Journal of Applied Science, 2003,21(4):367-372.(in Chinese)
[10] Cheung D,Han J W,Ng V T,et al.Maintenance of discovered association rules in large databases:an incremental updating technique[A].In:Proceedings of the 12th International Conference on Data Engineering[C].New Orleans,Louisiana,USA,1996.106-114.
[11] Cheung D,LEE S,Kao B.A general incremental technique for maintaining discovered association rules[A].In:Proceedings of the 5th International Conference on Database Systems for Advanced Applications[C].Melbourne,Australia,1997.185-194.

相似文献/References:

[1]陆建江,徐宝文,邹晓峰,等.模糊关联规则的并行挖掘算法[J].东南大学学报(自然科学版),2005,35(2):165.[doi:10.3969/j.issn.1001-0505.2005.02.001]
 Lu Jianjiang,Xu Baowen,Zou Xiaofeng,et al.Parallel mining algorithm for fuzzy association rules[J].Journal of Southeast University (Natural Science Edition),2005,35(2):165.[doi:10.3969/j.issn.1001-0505.2005.02.001]
[2]丁艺明,金远平.一种基于记录分区的多值关联规则挖掘算法[J].东南大学学报(自然科学版),2000,30(2):6.[doi:10.3969/j.issn.1001-0505.2000.02.002]
 Ding Yiming,Jin Yuanping.A Record Partition Based Algorithm for Mining Quantitative Association Rules[J].Journal of Southeast University (Natural Science Edition),2000,30(2):6.[doi:10.3969/j.issn.1001-0505.2000.02.002]
[3]朱慧云,陈森发,张丽杰.动态环境下多个时期的客户购物模式变化挖掘[J].东南大学学报(自然科学版),2012,42(5):1012.[doi:10.3969/j.issn.1001-0505.2012.05.038]
 Zhu Huiyun,Chen Senfa,Zhang Lijie.Change mining of customer shopping patterns from multi-period datasets under dynamic environment[J].Journal of Southeast University (Natural Science Edition),2012,42(2):1012.[doi:10.3969/j.issn.1001-0505.2012.05.038]
[4]胡孔法,张长海,陈崚,等.一种面向物流数据分析的路径序列挖掘算法ImGSP[J].东南大学学报(自然科学版),2008,38(6):970.[doi:10.3969/j.issn.1001-0505.2008.06.007]
 Hu Kongfa,Zhang Changhai,Chen Ling,et al.ImGSP:a path sequence mining algorithm for product flow analysis[J].Journal of Southeast University (Natural Science Edition),2008,38(2):970.[doi:10.3969/j.issn.1001-0505.2008.06.007]
[5]杨明,杨萍,吉根林,等.一种基于关联规则的缺省规则挖掘算法[J].东南大学学报(自然科学版),2003,33(6):689.[doi:10.3969/j.issn.1001-0505.2003.06.003]
 Yang Ming,Yang Ping,Ji Genlin,et al.Algorithm for mining default decision rules based on association rules[J].Journal of Southeast University (Natural Science Edition),2003,33(2):689.[doi:10.3969/j.issn.1001-0505.2003.06.003]
[6]肖利,金远平,徐宏炳,等.一个新的挖掘广义关联规则算法[J].东南大学学报(自然科学版),1997,27(6):76.[doi:10.3969/j.issn.1001-0505.1997.06.015]
 Xiao Li,Jin Yuanping,Xu Hongbing,et al.A New Algorithm for Mining Generalized Association Rules[J].Journal of Southeast University (Natural Science Edition),1997,27(2):76.[doi:10.3969/j.issn.1001-0505.1997.06.015]
[7]陆建江,徐宝文.挖掘典型的语言值关联规则[J].东南大学学报(自然科学版),2004,34(3):318.[doi:10.3969/j.issn.1001-0505.2004.03.008]
 Lu Jianjiang,Xu Baowen.Mining typical association rules with linguistic terms[J].Journal of Southeast University (Natural Science Edition),2004,34(2):318.[doi:10.3969/j.issn.1001-0505.2004.03.008]
[8]吴含前,朱云杰,谢珏.基于逻辑回归的中文在线评论有效性检测模型[J].东南大学学报(自然科学版),2015,45(3):433.[doi:10.3969/j.issn.1001-0505.2015.03.004]
 Wu Hanqian,Zhu Yunjie,Xie Jue.Detection model of effectiveness of Chinese online reviews based on logistic regression[J].Journal of Southeast University (Natural Science Edition),2015,45(2):433.[doi:10.3969/j.issn.1001-0505.2015.03.004]

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金资助项目(70371015).
作者简介: 李少冬(1960—),男,博士生,lisd@jswst.gov.cn; 孙志挥(联系人),男,教授,博士生导师,sunzh@seu.edu.cn.
更新日期/Last Update: 2005-03-20