# [1]王年,范益政,梁栋,等.一种基于等腰梯形的摄像机自标定方法[J].东南大学学报(自然科学版),2005,35(2):195-198.[doi:10.3969/j.issn.1001-0505.2005.02.007] 　Wang Nian,Fan Yizheng,Liang Dong,et al.Method of camera self-calibration based on isosceles trapezoid[J].Journal of Southeast University (Natural Science Edition),2005,35(2):195-198.[doi:10.3969/j.issn.1001-0505.2005.02.007] 点击复制 一种基于等腰梯形的摄像机自标定方法() 分享到： var jiathis_config = { data_track_clickback: true };

35

2005年第2期

195-198

2005-03-20

## 文章信息/Info

Title:
Method of camera self-calibration based on isosceles trapezoid

1 安徽大学计算智能与信号处理教育部重点实验室, 合肥 230039; 2 安徽大学数学系, 合肥 230039
Author(s):
1 Education Ministry Key Laboratory of Intelligent Computing and Signal Processing, Anhui University, Hefei 230039, China
2 Department of Mathematics, Anhui University, Hefei 230039, China

Keywords:

TP391
DOI:
10.3969/j.issn.1001-0505.2005.02.007

Abstract:
To develop this method k(k≥6) images containing isosceles trapezoids are given. The four edges of each isosceles trapezoid are detected and the vanishing point of the direction of parallel edges and four corner points are worked out. By the theory of harmonic conjugate in projective geometry, midpoints of two parallel edges are determined. Using the constraints of vanishing points on orthogonal directions to absolute conic C,(k-1) equations on C can be established. Applying Cholesky decomposition to the solution C, the camera intrinsic parameters can be obtained then. Experimental results show that the proposed method has a quite high accuracy of calibration. Image correspondence is not involved in this approach, and the geometric information of isosceles trapezoids such as size and position etc. are not needed. There it is of simple principle.

## 参考文献/References:

[1] Hartley R.Estimation of relative camera positions for uncalibrated cameras[A].In:Sandini G,ed. Proceeding of the European Conference on Computer Vision LNCS 588[C].Santa Margherita Ligure:Springer,1992.579-587.
[2] Maybank S J,Faugeras O D.A theory of self-calibration of a moving camera[J]. International Journal of Computer Vision, 1992,8(2):123-151.
[3] Sturm P,Maybank S J.On plane-based camera calibration:a general algorithm,singularities,applications[A].In:Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition [C].Colorado:IEEE Computer Society Press,1999.432-437.
[4] Tsai R Y.A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses[J].IEEE Journal of Robotics and Automation,1987,3(4):323-344.
[5] Zhang Z.Camera calibration with one-dimensional objects[A].In:Heyden A,Sparr G,Nielsen M,eds.Proceedings of 7th European Conference on Computer Vision LNCS 2353[C].Copenhagen:Springer,2002.161-174.
[6] 吴福朝,王光辉,胡占义.由矩形确定摄像机内参数与位置的线性方法[J].软件学报,2003,14(3):703-712.
Wu Fuchao,Wang Guanghui,Hu Zhanyi.A linear approach for determining intrinsic parameters and pose of cameras from rectangles [J]. Journal of Software, 2003,14(3):703-712.(in Chinese)
[7] Hartley R,Zisserman A.计算机视觉中的多视图几何[M].韦穗等译.合肥:安徽大学出版社,2002.3,134-157.

## 相似文献/References:

[1]张捷,李新德,戴先中.基于立体靶标的摄像机标定方法[J].东南大学学报(自然科学版),2011,41(3):543.[doi:10.3969/j.issn.1001-0505.2011.03.022]
Zhang Jie,Li Xinde,Dai Xianzhong.Camera calibration method based on 3D board[J].Journal of Southeast University (Natural Science Edition),2011,41(2):543.[doi:10.3969/j.issn.1001-0505.2011.03.022]