[1]费智,杜建国.寡头垄断市场下量本利复杂性分析[J].东南大学学报(自然科学版),2005,35(3):493-497.[doi:10.3969/j.issn.1001-0505.2005.03.036]
 Fei Zhi,Du Jianguo.Complexity analysis about cost, sales volume and profit in duopoly[J].Journal of Southeast University (Natural Science Edition),2005,35(3):493-497.[doi:10.3969/j.issn.1001-0505.2005.03.036]
点击复制

寡头垄断市场下量本利复杂性分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
35
期数:
2005年第3期
页码:
493-497
栏目:
经济与管理
出版日期:
2005-05-20

文章信息/Info

Title:
Complexity analysis about cost, sales volume and profit in duopoly
作者:
费智1 杜建国23
1 江苏南通天生港发电有限公司, 南通 226003; 2 江苏大学工商管理学院, 镇江 212013; 3 南京大学工程管理学院, 南京 210093
Author(s):
Fei Zhi1 Du Jianguo23
1 Nantong Tiansheng Harbor Electricity Generation Corporation, Nantong 226003, China
2 School of Business Administration, Jiangsu University, Zhenjiang 212013, China
3 School of Management Science and Engineering,
关键词:
量本利分析 混沌 纳什均衡 等周期图 混沌图
Keywords:
cost-volume-profit analysis chaos Nash equilibrium iso-period plot chaos plot
分类号:
F069;F232
DOI:
10.3969/j.issn.1001-0505.2005.03.036
摘要:
以动态古诺模型为基础,在需求函数是非线性、成本函数是线性的情况下分析了企业的量本利动态演化的博弈模型,对离散动态系统的Nash均衡的稳定性进行了分析.当模型的某些参数在一定范围内变化时,Nash均衡点失去稳定性,经倍周期分叉后出现混沌态.结果表明,参与人对产量的调整速度越小或单位变动成本越大,其利润就越稳定.同时用数值方法模拟了2个参数同时变化时系统复杂的动态性.从2个参数同时变化时的等周期图和混沌图,可观察到导致周期态、混沌态的不同路径.
Abstract:
According to a dynamic Cournot model, the dynamical game model on cost, sales volume and profits of corporations is analyzed under the conditions that demand function is non-linear and the cost function is linear. The stability of the equilibrium of the discrete dynamical system is studied. As some parameters of the model vary, the stability of Nash equilibrium would lose and the complex chaotic behavior occurs. Numerical results show that the player’s profits become more stable if the speed of adjustment decreases or variable cost per unit increases. Using reliable numerical methods, the complex dynamical behavior of the model are studied when two parameters are simultaneously varied. Several different routes to chaos can be found in iso-period plot and chaos plot.

参考文献/References:

[1] Barnett W A,Chen P.Deterministic chaos and fractal attractors as tools for nonparametric dynamical econometric inference[J]. Mathematical Computer Modeling, 1988,8(10):275-296.
[2] Baumal W J,Wolf E N.Feedback form productivity growth to R & D [J].Scandinavian Journal of Economics, 1983,85(1):147-157.
[3] Baumal W J,Benhabib J.Chaos significance [J].Journal of Economic Perspectives, 1989,4(1):77-105.
[4] 施祖辉.传统经济学与混沌经济学的比较研究——兼论传统经济理论的局限性[J].外国经济与管理,2001,23(10):2-5.
  Shi Zuhui.A comparative study on orthodox economics and economic theory about chaos and a discussion on the limitation of orthodox economic theory[J].Foreign Economics & Management, 2001,23(10):2-5.(in Chinese)
[5] 盛昭瀚,姚洪兴,陈国华,等.混沌动力系统的重构预测与控制[M].北京:中国经济出版社,2003.408-419.
[6] 姚洪兴,盛昭瀚.股市预测中的小波神经网络方法[J].系统工程理论与实践,2002,22(6):33-38.
  Yao Hongxing,Sheng Zhaohan.Method of the wavelet neural network in the prediction of stock market[J].System Engineering—Theory and Practice, 2002,22(6):33-38.(in Chinese)
[7] 刘洪.经济混沌的动因与预测[J].合肥工业大学学报(自然科学版),1995,18(3):43-48.
  Liu Hong.The causalities of economic chaos and forecasting[J]. Journal of Hefei University of Technology(Natural Science Edition), 1995,18(3):43-48.(in Chinese)
[8] 杜建国.走出资产投资规模的误区[J].江苏理工大学学报(社会科学版),1999,1(2):52-54.
  Du Jianguo.Avoid the misunderstanding of capital investment scale [J]. Journal of Jiangsu University of Science and Technology(Social Sciences Edition), 1999,1(2):52-54.(in Chinese)
[9] 达岩.博弈论在管理会计中的应用[J].江苏商业会计,2002,1(4):3-7.
  Da Yan.Application of game theory in management accounting [J].Jiangsu Business Accounting, 2002,1(4):3-7.(in Chinese)
[10] 杜建国.本量利问题的博弈分析[J].江苏大学学报(自然科学版),2003,24(1):40-42.
  Du Jianguo.The analysis of game theory about the relation of cost,sales volume and profits [J]. Journal of Jiangsu University(Natural Science Edition), 2004,24(1):40-42.(in Chinese)
[11] Agiza H N,Hegazi A S,Elsadany A A.Complex dynamics and synchronization of a duopoly game with bounded rationality [J].Mathematics and Computers in Simulation, 2002,58(2):133-146.
[12] Gallas J A C,Nusse H E.Periodicity versus chaos in the dynamics of cobweb models [J].Journal of Economic Behavior & Organization, 1996, 29(3):447-464.
[13] Ott E.Chaos in dynamical systems [M].Canada:Cambridge University Press,1993.49-50.
[14] Onozaki T,Sieg G,Yokoo M.Complex dynamics in a cobweb model with adaptive production adjustment [J].Journal of Economic Behavior & Organization, 2000,41(2):101-115.

相似文献/References:

[1]郝勇生,于向军,赵刚,等.基于改进粒子群算法的球磨机运行优化[J].东南大学学报(自然科学版),2008,38(3):419.[doi:10.3969/j.issn.1001-0505.2008.03.011]
 Hao Yongsheng,Yu Xiangjun,Zhao Gang,et al.Optimization for ball mill operation based on improved particle swarm optimization algorithm[J].Journal of Southeast University (Natural Science Edition),2008,38(3):419.[doi:10.3969/j.issn.1001-0505.2008.03.011]
[2]王福来,达庆利.广义Lorenz映射的混沌行为及不变密度[J].东南大学学报(自然科学版),2007,37(4):711.[doi:10.3969/j.issn.1001-0505.2007.04.033]
 Wang Fulai,Da Qingli.Chaotic behavior of generalized Lorenz maps and its invariant density[J].Journal of Southeast University (Natural Science Edition),2007,37(3):711.[doi:10.3969/j.issn.1001-0505.2007.04.033]
[3]张骥骧,达庆利.双寡头不同理性博弈模型分析[J].东南大学学报(自然科学版),2006,36(6):1029.[doi:10.3969/j.issn.1001-0505.2006.06.031]
 Zhang Jixiang,Da Qingli.Analysis of duopoly game with different rationality in oligopoly market[J].Journal of Southeast University (Natural Science Edition),2006,36(3):1029.[doi:10.3969/j.issn.1001-0505.2006.06.031]
[4]王福来,达庆利.Lorenz映射系统中连续整数周期轨道的存在性[J].东南大学学报(自然科学版),2008,38(5):923.[doi:10.3969/j.issn.1001-0505.2008.05.035]
 Wang Fulai,Da Qingli.Consturctive periodic orbits in Lorenz maps systems[J].Journal of Southeast University (Natural Science Edition),2008,38(3):923.[doi:10.3969/j.issn.1001-0505.2008.05.035]
[5]陈阳.准熵的性质及其应用[J].东南大学学报(自然科学版),2006,36(2):222.[doi:10.3969/j.issn.1001-0505.2006.02.009]
 Chen Yang.Properties of quasi-entropy and their application[J].Journal of Southeast University (Natural Science Edition),2006,36(3):222.[doi:10.3969/j.issn.1001-0505.2006.02.009]
[6]王福来,达庆利.改进的临近返回检测法:时间序列的混沌性诊断[J].东南大学学报(自然科学版),2006,36(6):1039.[doi:10.3969/j.issn.1001-0505.2006.06.033]
 Wang Fulai,Da Qingli.Chaotic analysis of time series based on improved close returns test[J].Journal of Southeast University (Natural Science Edition),2006,36(3):1039.[doi:10.3969/j.issn.1001-0505.2006.06.033]
[7]张胜,刘红星,高敦堂,等.ANN非线性时间序列预测模型输入延时τ的确定[J].东南大学学报(自然科学版),2002,32(6):905.[doi:10.3969/j.issn.1001-0505.2002.06.017]
 Zhang Sheng,Liu Hongxing,Gao Duntang,et al.Determining the input time delay τ of a neural network for nonlinear time series prediction[J].Journal of Southeast University (Natural Science Edition),2002,32(3):905.[doi:10.3969/j.issn.1001-0505.2002.06.017]
[8]郝玉峰,王俊生,孙啸.一组混沌保密通信系统的理论探讨[J].东南大学学报(自然科学版),2000,30(3):31.[doi:10.3969/j.issn.1001-0505.2000.03.007]
 Hao Yufeng,Wang Junsheng,Sun Xiao.A Group of Chaotic Systems for Secure Communicaion[J].Journal of Southeast University (Natural Science Edition),2000,30(3):31.[doi:10.3969/j.issn.1001-0505.2000.03.007]
[9]高亹,张新江,张勇.非线性转子动力学问题研究综述[J].东南大学学报(自然科学版),2002,32(3):443.[doi:10.3969/j.issn.1001-0505.2002.03.029]
 Gao Wei,Zhang Xinjiang,Zhang Yong.Review of nonlinear rotor-dynamics[J].Journal of Southeast University (Natural Science Edition),2002,32(3):443.[doi:10.3969/j.issn.1001-0505.2002.03.029]

备注/Memo

备注/Memo:
作者简介: 费智(1966—),男,高级工程师.
更新日期/Last Update: 2005-05-20