# [1]徐伟娟.2×2表参数置信域的几何方法[J].东南大学学报(自然科学版),2005,35(4):645-649.[doi:10.3969/j.issn.1001-0505.2005.04.033] 　Xu Weijuan.Geometry method of confidence interval on 2× 2 table[J].Journal of Southeast University (Natural Science Edition),2005,35(4):645-649.[doi:10.3969/j.issn.1001-0505.2005.04.033] 点击复制 2×2表参数置信域的几何方法() 分享到： var jiathis_config = { data_track_clickback: true };

35

2005年第4期

645-649

2005-07-20

## 文章信息/Info

Title:
Geometry method of confidence interval on 2× 2 table

Author(s):
Xu Weijuan
Department of Mathematics, Southeast University, Nanjing 210096, China

Keywords:

O211.9
DOI:
10.3969/j.issn.1001-0505.2005.04.033

Abstract:
A geometry method is brought forward in this article to analyze the interval estimate of the simple difference(SD)and risk ratio(RR)between the proportions of the primary infection and the secondary infection in biomedical statistics. A geometry theory of multinomial nonlinear models is also analyzed systematically study and three theorems about confidence interval of parameter are proved. The secondary infection given the primary infection is regarded as a special multinomial nonlinear model as follows: p(Y; π(θ))=n!∏3i=1yii(θ)/yi!),Y={y1,y2,y3}T,∑3i=1πi(θ)=1,∑3i=1yi=n. And the three theorems proved above are applied to the 2×2 table and the secondary infection given the primary infection and the primary infection.

## 参考文献/References:

[1] Agresti A.Categorical data analysis [M].New York:Wiley,1990.45-46.
[2] Beal S L.Asymptotic confidence intervals for the difference between two binomial parameters for use with small sample [J]. Biometrics,1987,43:941-950.
[3] Chan I S F,Zhang Z-X.Test-based exact confidence intervals for the differences of two binomial proportions [J]. Biometrics,1999,55:1202-1209.
[4] Tango T.Equivalence test and confidence interval for the difference in proportions for the paired-sample design [J].Statistics in Medicine,1998,17:891-908.
[5] Lui K-J.Interval estimation of risk ratio between the secondary infection given the primary infection and the primary infection [J]. Biometrics,1998,54(2):706-711.
[6] Lui K-J.Confidence intervals of the simple difference between the proportions of a primary infection and a secondary infection,given the primary infection [J].Biometrical Journal,2000,42(1):59-69.
[7] Wei B C.Geometry of multinomial distribution models [J].Advances in Mathematics,1993,22(1):84-85.
[8] Bates D M,Watts D G.Relative curvature measures of nonlinearity [J]. J R Statiis Soc Ser B,1980,42(1):1-25.
[9] 韦博成.现代非线性回归分析 [M].南京:东南大学出版社,1989.1-2.
[10] Wei B-C.Exponential family nonlinear models[M].Berlin:Springer Germany,1998.31-53.
[11] Wei B-C.Some asymptotic inference in multinomial nonlinear models [J]. Appl Math JCU,1996,11(B):273-284.
[12] Hamilton D C.Confidence regions for parameter subsets in nonlinear regression [J].Biometrika,1986,73(1):57-64.