[1]常娟,薛星美.序Hilbert空间中的时脉冲中立型泛函微分方程[J].东南大学学报(自然科学版),2005,35(4):654-658.[doi:10.3969/j.issn.1001-0505.2005.04.035]
 Chang Juan,Xue Xingmei.Impulsive neutral functional differential equations with variable times in ordered Hilbert spaces[J].Journal of Southeast University (Natural Science Edition),2005,35(4):654-658.[doi:10.3969/j.issn.1001-0505.2005.04.035]
点击复制

序Hilbert空间中的时脉冲中立型泛函微分方程()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
35
期数:
2005年第4期
页码:
654-658
栏目:
数学、物理学、力学
出版日期:
2005-07-20

文章信息/Info

Title:
Impulsive neutral functional differential equations with variable times in ordered Hilbert spaces
作者:
常娟 薛星美
东南大学数学系, 南京 210096
Author(s):
Chang Juan Xue Xingmei
Department of Mathematics, Southeast University, Nanjing 210096, China
关键词:
脉冲中立型泛函微分方程 时变 不动点 序Hilbert 空间
Keywords:
impulsive neutral functional differential equation variable time fixed point ordered Hilbert spaces
分类号:
O175.15
DOI:
10.3969/j.issn.1001-0505.2005.04.035
摘要:
研究了时变脉冲中立型泛函微分方程解的存在性, 即
Abstract:
The impulsive neutral functional differential equation with variable times is studied: {(d)/(dt)[y(t)-g(t,y(t))]=f(t,y(t))a.e. t∈J=[0,T]; t≠τk(y(t))y(t+)=Ik(y(t))t=τk(y(t)); k=1,2,…,m y(0)=ξ Because the moments functions τk(y(t)) are unfixed, some research of this problem is usually investigated in finite dimensional spaces. In this paper some conclusions in finite dimensional spaces are extended to infinite dimensional ordered Hilbert spaces by using the Schaefer’s fixed-point theorem and the existence theorem of solutions for impulsive neutral functional differential equations with variable times is obtained. Some additional conditions are put on Ik, τk to guarantee that the solution to this problem meets each barrier almost once.

参考文献/References:

[1] Frigon M,O’Regan D.Existence results for first-order impulsive differential equations[J].Math Anal Appl,1995,193:96-113.
[2] Benchohra M,Henderson J,Ntouyas S K.Existence results for impulsive multivalued semilinear neutral functional differential inclusions in Banach spaces[J].Math Anal Appl,2001,263(2):763-780.
[3] Benchohra M,Henderson J,Ntouyas S K.An existence result for first-order impulsive functional differential equations in Banach spaces[J].Comput Math Appl,2001,42(10):1303-1310.
[4] Benchohra M,Henderson J,Ntouyas S K.On first order impulsive semilinear functional differential inclusions[J].Archivum Mathematicum,2003,39:129-139.
[5] Franco D,Nieto J J.Maximum principles for periodic impulsive first order problems[J].Comput Appl Math,1998,88(1):149-159.
[6] Lakshmikantham V,Papageorgion N S,Basundhara J.The method of upper and lower solutions and monotone technique for impulsive differential equations with variable moments[J].Appl Analysis,1993,15(51):41-58.
[7] Kaul S,Lakshmikantham V,Leola S.Extremal solutions comparison principle and stability criteria for impulsive differential equations with variable times[J].Nonlinear Anal,1994,22(10):1263-1270.
[8] Frigon M,O’Regan D.Impulsive differential equations with variable times[J].Nonlinear Anal,1996,26(12):1913-1922.
[9] Benchohra M,Duahab A.Impulsive neutral functional differential equations with variable times[J].Nonlinear Anal,2003,55(6):679-693.
[10] 郭大钧.非线性泛函分析.第2版[M].济南:山东科技出版社,2003.235-243.

相似文献/References:

[1]李荆垠,徐南荣.由时变ARMA模型描述的一类非平稳时间序列的特性[J].东南大学学报(自然科学版),1989,19(2):75.[doi:10.3969/j.issn.1001-0505.1989.02.011]
 Li Jingyin Xu Nanrong (College of Management).The Characteristics of Nonstationary Time Series Described by Time-varying ARMA Models[J].Journal of Southeast University (Natural Science Edition),1989,19(4):75.[doi:10.3969/j.issn.1001-0505.1989.02.011]

备注/Memo

备注/Memo:
作者简介: 常娟(1979—),女,硕士生; 薛星美(联系人),男,博士,副教授,xmxue@seu.edu.cn.
更新日期/Last Update: 2005-07-20