[1]张赤斌,史金飞,易红.基于偏最小二乘法回归的工序质量建模[J].东南大学学报(自然科学版),2005,35(5):702-705.[doi:10.3969/j.issn.1001-0505.2005.05.010]
 Zhang Chibin,Shi Jinfei,Yi Hong.Manufacture process quality modeling based on partial least square regression[J].Journal of Southeast University (Natural Science Edition),2005,35(5):702-705.[doi:10.3969/j.issn.1001-0505.2005.05.010]
点击复制

基于偏最小二乘法回归的工序质量建模()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
35
期数:
2005年第5期
页码:
702-705
栏目:
机械工程
出版日期:
2005-09-20

文章信息/Info

Title:
Manufacture process quality modeling based on partial least square regression
作者:
张赤斌 史金飞 易红
东南大学机械工程系, 南京 210096
Author(s):
Zhang Chibin Shi Jinfei Yi Hong
Department of Mechanical Engineering, Southeast University, Nanjing 210096, China
关键词:
偏最小二乘回归 质量模型 质量控制
Keywords:
partial least square regression quality model quality control
分类号:
TH166
DOI:
10.3969/j.issn.1001-0505.2005.05.010
摘要:
针对制造工序质量控制问题,应用多元统计分析中的偏最小二乘回归法建立了质量模型.利用该模型可以定量分析加工工序与最终成品率之间的关系,进而通过将大量的工序影响因子约简得到主要影响因子子集.根据在线生产的相关质量数据,采用非线性迭代偏最小二乘法获得影响因子的权重.得到偏最小二乘因子权重可以在线预测成品质量变化,避免离线测试.在半导体制造实例研究中,以工序质量水平为自变量,成品质量水平为因变量,建立了质量水平传递模型,应用该方法可实现多工序质量异常的在线诊断和预测,为质量控制提供了定量依据.
Abstract:
Partial least square(PLS)regression, a multivariate statistical approach, is applied to the manufacture process quality control, so that quality modeling can be established. The quality modeling can be used to analyze the relationship between finished product ratio and individual manufacture process, and reduce the large set of process quality variables to a much smaller set of PLS components. The PLS component scores can be frequently computed by the nonlinear iterative partial least square method from the on-line process data. With PLS component scores the quality variables can be predicted on-line before conducting off-line tests. In terms of the semiconductor manufacturing research, quality level transfer model was established on the basis of taking process quality levels as independent variables and finished quality levels as dependent variables. The application of this approach can detect and forecast the multi-process abnormity and provide a quantitative analysis foundation for quality control.

参考文献/References:

[1] 张琳娜.精度设计与质量控制基础[M].北京:中国计量出版社,1997.36-58.
[2] Ren Changwei,Benito Fernandez.Improved CNC machining using NARMA neural systems[A].In: IEEE International Conference on Neural Networks[C].San Francisco,CA,USA,1993.1865-1870.
[3] Qin S J. Recursive PLS algorithms for adaptive data modeling[J]. Computers and Chemical Engineering,1998,22(4):503-514.
[4] 王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社,1999.45-67.
[5] MacGregor J F,Jaeckle C,Kiparissides C.Process monitoring and diagnosis by multiblock PLS methods[J].AICHE Journal,1994,40(5):826-838.
[6] Song Kai,Wang Haiqing,Li Ping.PLS-based optimal quality control model for TE process[A].In: IEEE International Conference on Systems,Man and Cybernetics[C].The Hague,Netherlands,2004.1354-1359.
[7] Aguilera P A,Garrido Frenich,Castro H,et al.PLS and PCR methods in the assessment of coastal water quality[J].Environmental Monitoring and Assessment,2000,62(2):193-204.
[8] Kruger U,Chen Q,McFariane R C.Extended PLS approach for enhanced condition monitoring of industrial processes [J].AICHE Journal, 2001,47(9):2076-2091.
[9] Choi J,Huang J Y,Kim M G,et al.Operational status of PLS[A].In: Proceedings of the IEEE Particle Accelerator Conference[C].New York,NY,USA,1999.2418-2420.
[10] Xu Di. Multivariate statistical modeling and robust optimization in quality engineering[D].New Jersey:State University of New Jersey,2001.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金资助项目(70272046)、国家自然科学基金资助项目(70271035)、国家重点基础研究发展计划(973计划)资助项目(2002CB312202).
作者简介: 张赤斌(1968—),男,博士,副教授,chibinchang@yahoo.com.cn.
更新日期/Last Update: 2005-09-20