[1]约尔钦·宁克段江海宋爱国吴涓.随机共振神经元利用噪声辅助进行信号传输特性分析[J].东南大学学报(自然科学版),2005,35(5):710-713.[doi:10.3969/j.issn.1001-0505.2005.05.012]
 Joachim Ninke,Duan Jianghai,Song Aiguo,et al.Analysis on noise-assisted signal transmission in neurons based on stochastic resonance[J].Journal of Southeast University (Natural Science Edition),2005,35(5):710-713.[doi:10.3969/j.issn.1001-0505.2005.05.012]
点击复制

随机共振神经元利用噪声辅助进行信号传输特性分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
35
期数:
2005年第5期
页码:
710-713
栏目:
其他
出版日期:
2005-09-20

文章信息/Info

Title:
Analysis on noise-assisted signal transmission in neurons based on stochastic resonance
作者:
约尔钦·宁克段江海宋爱国吴涓
东南大学仪器科学与工程系, 南京 210096
Author(s):
Joachim Ninke Duan Jianghai Song Aiguo Wu Juan
Department of Instrument Science and Technology, Southeast University, Nanjing 210096, China
关键词:
随机共振 阈值神经元 信息理论 双极性信号传输
Keywords:
stochastic resonance threshold neurons information theory bipolar signal transmission
分类号:
TN941.4;TN949.197
DOI:
10.3969/j.issn.1001-0505.2005.05.012
摘要:
根据生物神经元是利用噪声通过随机共振机制进行信息处理的现象,以阀值神经元为例,采用香农第二定理,分析了双极性信号和白噪声通过由多个神经元串联或并联组成的系统的输出情况,从品质因数、传输长度等角度对多个神经元串联系统的输出特性随噪声强度变化进行了分析.实验结果表明:系统存在随机共振现象,即存在最优的噪声量可以最大限度地增强信息传输; 串联时传输信息量随级数的增大而减小,并联时正好相反; 噪声的分布形式只影响共振效应的强弱,而不影响系统的随机共振特性; 均匀白噪声比高斯白噪声有更强的共振效应.从而说明了噪声对信息传输的积极作用.
Abstract:
According to the phenomenon that biological neurons process information by the utilization of noise via stochastic resonance(SR), the output of bipolar random signal and white noise through threshold neurons connected in series or in parallel were studied by Shannon’s second theorem. The influence of noise distribution on SR was investigated and the characteristics of the neurons in series were analyzed in terms of goodness and propagation length. The results demonstrate the optimal noise-assisted information transmission due to SR. To the neural network in series, information transmission decreases as the levels increase, but it is quite the contrary to the parallel case. The noise variance only affects the intensity of SR, no matter with the SR phenomenon. Compared with Gaussian noise, the even white noise has stronger SR behavior. All these proved the noise was effective in signal transmission.

参考文献/References:

[1] Bulsara A R,Zador A.Threshold detection of wideband signals:a noise-induced maximum in the mutual information [J].Phys Rev E,1996,54(3):2185-2188.
[2] Chapeau-Blondeau F.Noise enhanced capacity via stochastic resonance in an asymmetric binary channel [J].Phys Rev E,1997,55(2):2016-2019.
[3] Mitaim S,Kosko B.Adaptive stochastic resonance for noisy threshold neurons based on mutual information [A].In: Proceedings of the 2002 IEEE International Joint Conference on Neural Networks [C].Honolulu,USA,2002.1980-1985.
[4] Chapeau-Blondeau F.Noise-assisted propagation over a nonlinear line of threshold elements [J].Electronics Letters,1999,35(13):1055-1056.
[5] Chapeau-Blondeau F.Nonlinear signal propagation enhanced by noise via stochastic resonance [J]. Int J of Bifurcation and Chaos,2000,10(8):1951-1959.
[6] Luchinsky D G,Mannella R,McClintock P V E,et al.Stochastic resonance in electrical circuits-Ⅱ:non-conventional stochastic resonance[J].IEEE Transactions on Circuits and Systems Ⅱ,1999,46(9):1215-1224.
[7] 段江海.混沌、随机共振在信号检测与信息处理中的应用[D].南京:东南大学仪器科学与工程系,2004.

相似文献/References:

[1]段江海,宋爱国,温秀兰,等.神经元中的随机共振及含噪周期方波脉冲信号的最优检测[J].东南大学学报(自然科学版),2003,33(3):328.[doi:10.3969/j.issn.1001-0505.2003.03.020]
 Duan Jianghai,Song Aiguo,Wen Xiulan,et al.Stochastic resonance in neuron and optimal detection of noisy periodic rectangular pulse trains[J].Journal of Southeast University (Natural Science Edition),2003,33(5):328.[doi:10.3969/j.issn.1001-0505.2003.03.020]

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金资助项目(60475034)、教育部霍英东教育基金资助项目、江苏省自然科学基金资助项目(BK2001402).
作者简介: 约尔钦·宁克(1968—),男,博士生; 宋爱国(联系人),男,博士,教授,博士生导师,a.g.song@seu.edu.cn.
更新日期/Last Update: 2005-09-20