[1]李小川,施明恒,张东辉.非均匀多孔介质中导热过程[J].东南大学学报(自然科学版),2005,35(5):761-765.[doi:10.3969/j.issn.1001-0505.2005.05.023]
 Li Xiaochuan,Shi Mingheng,Zhang Donghui.Heat conduction process in non-uniform porous media[J].Journal of Southeast University (Natural Science Edition),2005,35(5):761-765.[doi:10.3969/j.issn.1001-0505.2005.05.023]
点击复制

非均匀多孔介质中导热过程()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
35
期数:
2005年第5期
页码:
761-765
栏目:
能源与动力工程
出版日期:
2005-09-20

文章信息/Info

Title:
Heat conduction process in non-uniform porous media
作者:
李小川1 施明恒1 张东辉2
1 东南大学动力工程系, 南京 210096; 2 河海大学水资源环境学院, 南京 210098
Author(s):
Li Xiaochuan1 Shi Mingheng1 Zhang Donghui2
1 Department of Power Engineering, Southeast University, Nanjing 210096, China
2 College of Water Resources and Environmental Engineering, Hohai University, Nanjing 210098, China
关键词:
多孔介质 导热 温度分布 不连续性
Keywords:
porous media heat conduction temperature distribution discontinuity
分类号:
TK121
DOI:
10.3969/j.issn.1001-0505.2005.05.023
摘要:
采用控制容积法和界面调和平均导热系数以及图形处理方法,对典型非均匀多孔介质Sierpinski地毯中的导热过程进行分析与模拟计算.结果表明:实际多孔介质中温度与热流分布是不均匀和不连续的,内部结构是影响温度分布和热量传递的主要因素,其影响程度与骨架和孔隙的导热系数、孔隙的大小和分布有关; 温度梯度在孔隙中明显变大与孔隙处导热系数很小相对应; 热流在孔隙和骨架交界处的局部区域中明显变大,尤其是在方形孔隙的角部出现热流峰值,这与温度发生突变的位置点相对应.研究结果可以推广到更为复杂的非均匀多孔介质的场合,可以进一步认识非均匀多孔介质中的导热规律,为工程计算提供更精确的计算方法.
Abstract:
Heat conduction in a kind of typical non-uniform porous media, Sierpinski carpet, was analyzed and simulated, in which finite volume method and interface harmonic average thermal conductivity were adopted. The calculated results show that the distribution of temperature and heat fluxes in real porous media are non-uniform and discontinuous. Inner structure acts as a main influencing factor to heat conduction process. The influencing degree is consequent on the thermal conductivities of both matrix and pore. Moreover, the size and distribution of pores are also important factors. Corresponding to the smaller thermal conductivity, temperature gradient in pores obviously increases. Heat flux increases sharply in the interface of matrix and pore, especially in the corner of pore appears a peak value, which corresponds to the break point of temperature and centralizing area of thermal stress. The conclusions of this paper can be extended to more complicated situations of non-uniform porous media, thus the principles of heat conduction can be further discovered, which provides more precise methods for engineering calculation.

参考文献/References:

[1] 林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995.1-5.
[2] Kaviany M.Principle of heat transfer in porous media [M].New York:Springer-Verlag,1995.15-30.
[3] Carbonell R G,Whitaker S.Heat and mass transfer in porous media[A].In:Proceedings of the NATO Advanced Study Institute on Mechanics of Fluids in Porous Media[C].Newark,USA,1984.121-198.
[4] Miller M.Bounds for effective electrical,thermal,and magnetic properties of hete rogeneous materials[J]. Mathematical Physics,1969,12(10):1988-2004.
[5] Hadley G R.Thermal conductivity of packed metal powders[J].Int J Heat and Mass Transfer,1986,29(6):909-920.
[6] Katz A J,Thompson A H.Fractal sandstone pores:implications for conductivity and pore formation[J]. Physical Review Letters,1985,54(4):1325-1328.
[7] Krohn C E,Thompson A H.Microgeometry and transport properties of sedimentary rock[J]. Physical Review Letters,1987,36(5):625-694.
[8] 郁伯铭,姚凯伦.多孔介质中的分形与输运[J].物理,1994(5):281-284.
  Yu Boming,Yao Kailun.Transport in fractal porous media[J].Physics,1994(5):281-284.(in Chinese)
[9] Thovert J F,Wary F,Adler P M.Thermal conductivity of random media and regular fractals[J]. Journal of Applied Physics,1990,68(7):3872-3883.
[10] Adler P M,Thovert J F,Bekri S,et al.Real porous media:local geometry and transports[J].Journal of Engineering Mechanics,2002,128(8):829-839.
[11] Carson J K,Lovatt S J,Tanner D J,et al.An analysis of the influence of material structure on the effective thermal conductivity of theoretical porous materials using finite element simulations[J].Int J Refrigeration,2003,26(8):873-880.
[12] Carson J K,Lovatt S J,Tanner D J,et al.Experimental measurements of the effective thermal conductivity of a pseudo-porous food analogue over a range of porosities and mean pore sizes[J]. Journal of Food Engineering, 2004,63(1):87-95.
[13] Tarafdar S,Franz A.Modelling porous structures by repeated Sierpinski carpets [J]. Physica A,2001,292(15):1-8.
[14] 张东辉,金峰,施明恒,等.分形多孔介质中的热传导[J].应用科学学报,2003(3):253-257.
  Zhang Donghui,Jin Feng,Shi Mingheng,et al.Heat conduction in fractal porous media[J].Journal of Applied Sciences,2003(3):253-257.(in Chinese)
[15] 帕坦卡.传热与流体流动的数值计算[M].张政译.北京:科学出版社,1984.15-34.

相似文献/References:

[1]陈振乾,施明恒,虞维平,等.竖直圆柱空间多孔介质中非牛顿流体自然对流[J].东南大学学报(自然科学版),1995,25(2):61.[doi:10.3969/j.issn.1001-0505.1995.02.011]
 Chen Zhenqian,Shi,Mingheng,et al.Natural Convection of Non-Newtonian Fluids inside Porous Media in a Vertical Cylindrical Caviyt[J].Journal of Southeast University (Natural Science Edition),1995,25(5):61.[doi:10.3969/j.issn.1001-0505.1995.02.011]
[2]蒋绿林,施明恒.多孔物料床中液体沸腾换热的研究[J].东南大学学报(自然科学版),1990,20(3):26.[doi:10.3969/j.issn.1001-0505.1990.03.005]
 lnvestigation on Boiling Heat Transfer in Liquid Saturated Porous Bed[J].Journal of Southeast University (Natural Science Edition),1990,20(5):26.[doi:10.3969/j.issn.1001-0505.1990.03.005]
[3]俞伦鹏,孙仁洽.矩形闭合空间内多孔介质中自然对流传热研究[J].东南大学学报(自然科学版),1987,17(3):94.[doi:10.3969/j.issn.1001-0505.1987.03.010]
 Yu Lunpeng (Bejing Research Institute for Metrology and Measurement)Sun Renqia (Jen-Hsia) (Department of Power Engineering).Natural Convective Heat Transfer inside the Porous Media in a Closed Rectangular Cavity[J].Journal of Southeast University (Natural Science Edition),1987,17(5):94.[doi:10.3969/j.issn.1001-0505.1987.03.010]
[4]胡耀江,施明恒.多孔介质中注入蒸汽时热液区温度分布的计算[J].东南大学学报(自然科学版),1995,25(5):21.[doi:10.3969/j.issn.1001-0505.1995.05.004]
 Hu Yaojiang,Shi,Mingheng.Analysis on the Temperature Distribution in Hot Liquid Zone Preceding the Steam Condensation Front in Porous Media[J].Journal of Southeast University (Natural Science Edition),1995,25(5):21.[doi:10.3969/j.issn.1001-0505.1995.05.004]
[5]牟新竹,陈振乾.多尺度分形多孔介质气体有效扩散系数的数学模型[J].东南大学学报(自然科学版),2019,49(3):520.[doi:10.3969/j.issn.1001-0505.2019.03.017]
 Mou Xinzhu,Chen Zhenqian.Mathematical model for effective gas diffusion coefficient in multi-scale fractal porous media[J].Journal of Southeast University (Natural Science Edition),2019,49(5):520.[doi:10.3969/j.issn.1001-0505.2019.03.017]

备注/Memo

备注/Memo:
基金项目: 高等学校博士学科点专项科研基金资助项目(20040286029).
作者简介: 李小川(1976—),男,博士生; 施明恒(联系人),男,教授,博士生导师,mhshi@seu.edu.cn.
更新日期/Last Update: 2005-09-20