[1]韩莹,陈森发.有限扰动模糊命题逻辑系统的Σ-广义矛盾式[J].东南大学学报(自然科学版),2005,35(5):824-828.[doi:10.3969/j.issn.1001-0505.2005.05.036]
 Han Ying,Chen Senfa.Σ-generalized contradiction in the limited value disturbing fuzzy propositional logic[J].Journal of Southeast University (Natural Science Edition),2005,35(5):824-828.[doi:10.3969/j.issn.1001-0505.2005.05.036]
点击复制

有限扰动模糊命题逻辑系统的Σ-广义矛盾式()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
35
期数:
2005年第5期
页码:
824-828
栏目:
数学、物理学、力学
出版日期:
2005-09-20

文章信息/Info

Title:
Σ-generalized contradiction in the limited value disturbing fuzzy propositional logic
作者:
韩莹 陈森发
东南大学系统工程研究所, 南京 210096
Author(s):
Han Ying Chen Senfa
Institute of Systems Engineering, Southeast University, Nanjing 210096, China
关键词:
扰动模糊命题逻辑 Σ-广义矛盾式 降级算法
Keywords:
disturbing fuzzy propositional logic Σ-generalized contradiction downgrade algorithm
分类号:
O141.1
DOI:
10.3969/j.issn.1001-0505.2005.05.036
摘要:
为了克服经典一维模糊逻辑系统的不适应性, 提出了扰动模糊命题逻辑的概念.用二维扰动模糊命题逻辑最大子代数I2R 2的有限子集I2Rn 2取代I2R,2并在其中引入Σ-广义矛盾式理论.结果表明:任意公式至多经过2n-μ+δ次就可降级为矛盾式; 证明了矛盾式表示定理,表明关于一种有限值扰动模糊命题逻辑系统而言的广义矛盾式必可升降级为关于另一有限值扰动模糊命题逻辑系统而言的矛盾式. 为模糊信息处理的方法和应用提供了新的理论基础.
Abstract:
To overcome the inadaptability of the classical one-dimensional fuzzy logic system, the concept of disturbing-valued fuzzy propositional logic is put forwards. This article substitutes the largest sub-algebra I2R2 in two-dimensional disturbing fuzzy propositional logic with its limited subset I2Rn2 and introduces Σ-generalized contradiction theory. The main results are contradiction can be gained by employing downgrade algorithm to an arbitrary formula at most 2n-μ+δ times. Indication theorem of generalized contradiction is proved, which indicates that generalized contradiction of one limited disturbing fuzzy propositional logic certainly can be downgraded to contradiction of another limited disturbing fuzzy propositional logic.This gives us a new theoretical basis for fuzzy information process.

参考文献/References:

[1] Gorzalczany B.Approximate inference with interval-valued fuzzy sets-an outline[A].In:Proc Polish Symp on Interval and Fuzzy Math[C].Pozan,Poland,1983.89-95.
[2] Turksen B.Interval-valued fuzzy sets based on normal forms [J].Fuzzy Sets and Systems,1986,20:191-120.
[3] Atanassov K.Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems,1986,20:87-96.
[4] 孟广武.区间值模糊集的基本理论[J].应用数学,1993,6(3):212-217.
  Meng Guangwu.The essential theory of interval-valued fuzzy sets [J].Appl Matehmatics,1993,6(3):212-217.(in Chinese)
[5] Li Xiaoping,Wang Guijun.The SH-interval fuzzy subgroup[J].Fuzzy Sets and Systems,2000,112:319-321.
[6] de Kumar Supriya,Biswas Ranjit,Roy Akhil Ranjan.Some operation on intuitionistic fuzzy sets [J].Fuzzy Sets and Systems,2000,114:477-484.
[7] 陈图云,韩莹.有限扰动模糊逻辑代数及其广义重言式[J].辽宁师范大学学报(自然科学版),2002(4):343-345.
  Chen Tuyun,Han Ying.The algebra and generalized tautology in limited disturbing fuzzy propositional sets [J].Journal of Liaoning Noraml University(Nature Science Edition),2002(4):343-345.(in Chinese)
[8] 陈图云,韩莹,廖士中.扰动模糊逻辑I2的最大子代数及其广义重言式[J].工程数学学报,2003,20(2):118-121.
  Chen Tuyun,Han Ying,Liao Shizhong.The largest sub-algebra I22 and its generalized tautology in disturbing-valued fuzzy propositional sets[J].Journal of Engineering Mathematics,2003,20(2):118-121(in Chinese)
[9] 王国俊.非经典数理逻辑与近似推理 [M].北京:科学出版社,2000.50-60.
[10] 韩莹,陈森发,陈胜.扰动模糊命题逻辑的代数结构及其广义重言式性质[J].高校应用数学学报,2005,20(4).(待发表).
  Han Ying,Chen Senfa,Chen Sheng.Algebra structure of the disturbing fuzzy propositional logic and the properties of its generalized tautology[J]. Appl Math J Chinese Univer,2005,20(4),to appear.(in Chinese)

备注/Memo

备注/Memo:
作者简介: 韩莹(1978—),女,博士生; 陈森发(联系人),男,教授,博士生导师,chensenfa@163.com.
更新日期/Last Update: 2005-09-20