# [1]韩莹,陈森发.有限扰动模糊命题逻辑系统的Σ-广义矛盾式[J].东南大学学报(自然科学版),2005,35(5):824-828.[doi:10.3969/j.issn.1001-0505.2005.05.036] 　Han Ying,Chen Senfa.Σ-generalized contradiction in the limited value disturbing fuzzy propositional logic[J].Journal of Southeast University (Natural Science Edition),2005,35(5):824-828.[doi:10.3969/j.issn.1001-0505.2005.05.036] 点击复制 有限扰动模糊命题逻辑系统的Σ-广义矛盾式() 分享到： var jiathis_config = { data_track_clickback: true };

35

2005年第5期

824-828

2005-09-20

## 文章信息/Info

Title:
Σ-generalized contradiction in the limited value disturbing fuzzy propositional logic

Author(s):
Institute of Systems Engineering, Southeast University, Nanjing 210096, China

Keywords:

O141.1
DOI:
10.3969/j.issn.1001-0505.2005.05.036

Abstract:
To overcome the inadaptability of the classical one-dimensional fuzzy logic system, the concept of disturbing-valued fuzzy propositional logic is put forwards. This article substitutes the largest sub-algebra I2R2 in two-dimensional disturbing fuzzy propositional logic with its limited subset I2Rn2 and introduces Σ-generalized contradiction theory. The main results are contradiction can be gained by employing downgrade algorithm to an arbitrary formula at most 2n-μ+δ times. Indication theorem of generalized contradiction is proved, which indicates that generalized contradiction of one limited disturbing fuzzy propositional logic certainly can be downgraded to contradiction of another limited disturbing fuzzy propositional logic.This gives us a new theoretical basis for fuzzy information process.

## 参考文献/References:

[1] Gorzalczany B.Approximate inference with interval-valued fuzzy sets-an outline[A].In:Proc Polish Symp on Interval and Fuzzy Math[C].Pozan,Poland,1983.89-95.
[2] Turksen B.Interval-valued fuzzy sets based on normal forms [J].Fuzzy Sets and Systems,1986,20:191-120.
[3] Atanassov K.Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems,1986,20:87-96.
[4] 孟广武.区间值模糊集的基本理论[J].应用数学,1993,6(3):212-217.
Meng Guangwu.The essential theory of interval-valued fuzzy sets [J].Appl Matehmatics,1993,6(3):212-217.(in Chinese)
[5] Li Xiaoping,Wang Guijun.The SH-interval fuzzy subgroup[J].Fuzzy Sets and Systems,2000,112:319-321.
[6] de Kumar Supriya,Biswas Ranjit,Roy Akhil Ranjan.Some operation on intuitionistic fuzzy sets [J].Fuzzy Sets and Systems,2000,114:477-484.
[7] 陈图云,韩莹.有限扰动模糊逻辑代数及其广义重言式[J].辽宁师范大学学报(自然科学版),2002(4):343-345.
Chen Tuyun,Han Ying.The algebra and generalized tautology in limited disturbing fuzzy propositional sets [J].Journal of Liaoning Noraml University(Nature Science Edition),2002(4):343-345.(in Chinese)
[8] 陈图云,韩莹,廖士中.扰动模糊逻辑I2的最大子代数及其广义重言式[J].工程数学学报,2003,20(2):118-121.
Chen Tuyun,Han Ying,Liao Shizhong.The largest sub-algebra I22 and its generalized tautology in disturbing-valued fuzzy propositional sets[J].Journal of Engineering Mathematics,2003,20(2):118-121(in Chinese)
[9] 王国俊.非经典数理逻辑与近似推理 [M].北京:科学出版社,2000.50-60.
[10] 韩莹,陈森发,陈胜.扰动模糊命题逻辑的代数结构及其广义重言式性质[J].高校应用数学学报,2005,20(4).(待发表).
Han Ying,Chen Senfa,Chen Sheng.Algebra structure of the disturbing fuzzy propositional logic and the properties of its generalized tautology[J]. Appl Math J Chinese Univer,2005,20(4),to appear.(in Chinese)