# [1]李刚,于勇.半线性抛物方程可变号解的全局存在和爆破[J].东南大学学报(自然科学版),2005,35(5):829-832.[doi:10.3969/j.issn.1001-0505.2005.05.037] 　Li Gang,Yu Yong.Global existence and blow-up of sign-changing solutions to semilinear parabolic equations[J].Journal of Southeast University (Natural Science Edition),2005,35(5):829-832.[doi:10.3969/j.issn.1001-0505.2005.05.037] 点击复制 半线性抛物方程可变号解的全局存在和爆破() 分享到： var jiathis_config = { data_track_clickback: true };

35

2005年第5期

829-832

2005-09-20

## 文章信息/Info

Title:
Global existence and blow-up of sign-changing solutions to semilinear parabolic equations

Author(s):
Department of Mathematics, Nanjing University of Information Science and Technology, Nanjing 210044, China

Keywords:

O175.26
DOI:
10.3969/j.issn.1001-0505.2005.05.037

Abstract:
The equation: ut=uxx+(1+t)q|u|p-1u/|x|σ1 is considered, where σ≥0,q>σ/2-1, bound value being equal to zero, initial value being nonincreasing. Firstly, a self-similar transformation is made, then its eigenvalue problem is considered, energy function E(s) is defined, some existing inequalities are used, and the theory of infinite dimensional dynamical systems is adopted. It is shown that for any nonnegative integer k, k is the number of initial value sing-changing in bounded domain D,pk=1+(2+2q-σ)/(k+1) is the critical exponent for the above problem, i.e, if 1<p≤pk, then any nontrivial solution blows up at finite time; if p>pk, then the problem has a global solution.

## 参考文献/References:

[1] Fujita H.On the blowing up of solution of Cauchy problem for ut=Δu+u11 [J].J Fac Sci Univ Tokyot Sect 1A Math,1966,16(1):109-124.
[2] Deng K,Gila M,Levine H A.On critical exponents for a system of heat equations coupled in the boundary conditions [J].Acta Math Univ Comenian,1994,63(2):169-192.
[3] Deng K,Levine H A.The role of critical exponents in blow-up theorems:the sequel [J].J Math Anal Appl,2000,243(1):85-126.
[4] Paul M N.Critical exponent Soblev norms and the slice theorem for the quotient space of connections [J]. Pacific Journal of Mathematics,2001, 200(1):71-118.
[5] Mizoguchi N,Yanagida E.Critical exponent for the blowup of solutions with sign changes in a semilinear parabolic equation [J].Math Ann,1997,307(12):663-675.
[6] Escobedo M,Kavian O.Variational problems related to self-similar solutions of the heat equations [J].Non Ana TMA,1987,11(10):1103-1133.
[7] 齐民友,徐超江,王维克.现代偏微分方程引论 [M].武汉:武汉大学出版社,1994.286-324.
[8] Angent S.The zero set of a solution of a parabolic equation [J].J Reine Angew Math,1988,390(4):79-96.
[9] Chen M,Hale J K.Structural stability for time-periodic one-dimensional parabolic equations [J].J Diff Equ,1992,96(2):355-418.
[10] Matano H.Nonincrease of the lap-number of a solution for a one dimensional semilinear parabolic equation [J].J Fac Sci Univ Tokyo Sect 1A Math,1982,29(2):401-441.