[1]许兆棠,朱如鹏.刚性多支点传动轴主共振分析[J].东南大学学报(自然科学版),2006,36(1):71-76.[doi:10.3969/j.issn.1001-0505.2006.01.015]
 Xu Zhaotang,Zhu Rupeng.Analysis of main resonance of drive shaft with rigid multi-supports[J].Journal of Southeast University (Natural Science Edition),2006,36(1):71-76.[doi:10.3969/j.issn.1001-0505.2006.01.015]
点击复制

刚性多支点传动轴主共振分析()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
36
期数:
2006年第1期
页码:
71-76
栏目:
机械工程
出版日期:
2006-01-20

文章信息/Info

Title:
Analysis of main resonance of drive shaft with rigid multi-supports
作者:
许兆棠 朱如鹏
南京航空航天大学机电学院, 南京 210016
Author(s):
Xu Zhaotang Zhu Rupeng
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
关键词:
传动轴 刚性多支点 主共振 最大振幅 振幅突变
Keywords:
drive shaft rigid multi-supports main resonance maximum amplitude amplitude jump
分类号:
TH113.1
DOI:
10.3969/j.issn.1001-0505.2006.01.015
摘要:
根据质心运动定理、Galerkin法和Heaviside函数,求得非惯性系下倾斜刚性多支点传动轴的弯曲运动方程.在此基础上,用多尺度法求得稳态下主共振的一次近似定常解.分析了主共振的振型、最大振幅、稳定性和振幅突变性.结果表明:传动轴的弯曲运动方程是Duffing方程; 主共振时,各段轴相互影响; 每段轴主共振的振型与两支点轴主共振的振型相同; 主共振的最大振幅在最大跨距的轴段上; 主共振时,轴的振幅有可能突变,振幅突变的频率区间长度很小,其频率略小于固有频率.
Abstract:
A bending motion equation of a tilting drive shaft with rigid multi-supports is derived by theorem of the motion of mass center, method of Galerkin and Heaviside function. Approximate steady-state solutions of the main resonance are obtained through multiple scales method. The shapes, maximum amplitude, stability and amplitude jump of main resonance are analyzed. The results show that the bending motion equation is the Duffing one. Every span shaft in main resonance affects each other. The shape of main resonance of every span shaft is the same as that of a shaft with two supports. The maximum amplitude of main resonance is located at the maximum span shaft. When a drive shaft is in main resonance, the amplitude jump is possible. The interval length of frequency of amplitude jump is very small, and the frequency is a little smaller than the natural frequency.

参考文献/References:

[1] Ding J,Krodkiewski J M.Inclusion of static indetermination in the mathematical model for non-linear dynamic analyses of multi-bearing rotor system[J]. Journal of Sound and Vibration,1993,164(2):267-280.
[2] Ding J.Computation of multi-plane imbalance for a multi-bearing rotor system[J]. Journal of Sound and Vibration,1997,205(3):364-371.
[3] Krodkiewski J M,Sun L.Modelling of multi-bearing rotor system incorporation an active journal bearing[J].Journal of Sound and Vibration, 1998,210(2):215-229.
[4] Morton P G.Analysis of rotors supported upon many bearing[J].Journal of Mechanical Engineering Science, 1972,14(1):25-33.
[5] Ding J J,Jumaily A A.A linear regression model for the identification of unbalance changes in rotating machines[J].Journal of Sound and Vibration,2000,231(1):125-144.
[6] 龚道荣,吴晓.用奇异函数研究多支承转子系统固有横振[J].四川工业学院学报,1997(6):77-80.
  Gong Daorong,Wu Xiao.A study on the natural transverse vibration of multi-supported rotor system by using singular function[J].Journal of Sichuan Institute of Technology,1997(6):77-80.(in Chinese)
[7] 胡海岩.应用非线性动力学[M].北京:航空工业出版社,2000:97-104.
[8] 丁千,陈予恕.迟滞型材料阻尼转轴的分岔[J].应用数学和力学,2003,24(6):565-571.
  Ding Qian,Chen Yushu.Bifurcation of a shaft with hysteretic-type internal friction force of material[J].Applied Mathematics and Mechanics,2003, 24(6):565-571.(in Chinese)
[9] 王燮山.奇异函数及其在力学中的应用[M].北京:科学技术出版社,1993:52-54.
[10] 凌复华.突变理论及其应用[M].上海:上海交通大学出版社,1987:157-159.
[11] 张远达.浅谈高次方程[M].武汉:湖北教育出版社,1987:26-34.

备注/Memo

备注/Memo:
基金项目: 航空科学基金资助项目(03C52021)、江苏省自然科学基金资助项目(BK2004125).
作者简介: 许兆棠(1957—),男,博士生; 朱如鹏(联系人),男,博士,教授,博士生导师,meerpzhu@nuaa.edu.cn.
更新日期/Last Update: 2006-01-20