[1]张云升,孙伟,郑克仁,等.水泥-粉煤灰浆体的水化反应进程[J].东南大学学报(自然科学版),2006,36(1):118-123.[doi:10.3969/j.issn.1001-0505.2006.01.024]
 Zhang Yunsheng,Sun Wei,Zheng Keren,et al.Hydration process of Portland cement-fly ash pastes[J].Journal of Southeast University (Natural Science Edition),2006,36(1):118-123.[doi:10.3969/j.issn.1001-0505.2006.01.024]
点击复制

水泥-粉煤灰浆体的水化反应进程()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
36
期数:
2006年第1期
页码:
118-123
栏目:
材料科学与工程
出版日期:
2006-01-20

文章信息/Info

Title:
Hydration process of Portland cement-fly ash pastes
作者:
张云升1 孙伟1 郑克仁1 贾艳涛2
1 东南大学材料科学与工程系, 南京 210096; 2 河海大学材料材料科学与工程系, 南京 210016
Author(s):
Zhang Yunsheng1 Sun Wei1 Zheng Keren1 Jia Yantao2
1 Department of Materials Science and Engineering, Southeast University, Nanjing 210096, China
2 Department of Materials Science and Engineering, Hohai University, Nanjing 210016, China
关键词:
水泥 粉煤灰 反应程度 胶空比 力学性能
Keywords:
Portland cement fly ash degree of reaction gel/space ratio mechanical properties
分类号:
TU528
DOI:
10.3969/j.issn.1001-0505.2006.01.024
摘要:
为考察粉煤灰对水泥水化进程的影响,系统研究了水泥-粉煤灰浆体在不同养护龄期、水胶比、粉煤灰掺量下水泥和粉煤灰反应程度、非蒸发水数量、水化产物数量、孔结构和浆体力学性能.根据实验结果,建立了水泥-粉煤灰浆体中水泥反应程度与有效水灰比间的定量关系,推导出水泥和粉煤灰反应程度与胶空比之间的计算公式,并通过研究胶空比与浆体抗压强度关系曲线和比较胶空比与实测孔隙率来验证该公式的正确性; 另外,还对水泥-粉煤灰浆体的非蒸发水量与水化产物数量间的关系进行了研究,结果表明二者呈线性相关,可用非蒸发水量反映水化产物数量.
Abstract:
To explore the hydration process of Portland cement-fly ash system, the reaction degree of fly ash and Portland cement, non-evaporable water content, amount of hydration products, porosity and compressive strength of pure cement pastes and cement-fly ash pastes were studied at various curing ages, water-to-binder ratio(W/B), and fly ash replacement percentages. Based on the experimental results, the relationship between the degree of cement hydration and the effective water-to-cement(W/C)ratio, which is given by W/(CFF), is established. An equation describing the dependence of gel/space ratio on the degree of cement hydration and fly ash reaction is also proposed. The calculated gel/space ratios for cement-fly ash pastes are consistent with those for pure cement pastes in terms of their relationship with compressive strength. The proposed equation is verified by comparing the calculated gel/space ratios with the measured porosity by mercury intrusion porosimetry. Thus the proposed equation has been justified. In addition, the relationship between non-evaporable water content and amount of hydration products calculated by the degree of cement hydration and fly ash reaction is explored. The linear correlativity shows that the amount of hydration products can be figured out by using non-evaporable water content.

参考文献/References:

[1] Berry E E,Hemmings R T,Zhang M H,et al.Hydration in high-volume fly ash concrete binders [J]. ACI Materials Journal,1994,91(4):382-389.
[2] Xu A, Sarkar S.Microstructural development in high-volume fly ash cement system [J]. Journal of Materials in Civil Engineering,ASCE,1994,6(1):117-136.
[3] Lam Lik.A study of high-volume fly ash concrete [D].Hong Kong:Hong Kong University of Science and Engineering Library,1999.111-112.
[4] Neville A M.Properties of concrete[M].4th ed.London:ELBS with Longman,1981:275-279.
[5] Powers T C.The physical structure and engineering properties of concrete [J]. Portland Cement Association Research,1958,90(1):39.
[6] Powers T C.Structure and physical properties of hardened Portland cement pastes [J]. Journal of American Ceramic Society,1958,41(1):1-6.
[7] Young J F,Hansen W.Volume relationship for CSH formation based on hydration stoichiometry[C] // Proceedings of Materials Research Society Symposium.Pittsburgh,Pennsylvanian,USA:Materials Research Society,1987:313-332.
[8] Papadakis Vagelis G.Effect of fly ash on Portland cement systems Ⅰ.low-calcium fly ash [J]. Cement and Concrete Research,1999,29(11):1727-1736.
[9] Wu Z Q,Young J F.The hydration of tricalcium silicate in the presence of colloidal silica [J]. Journal of Materials Science, 1984,19(11):3477-3486.
[10] Bentz D P,Garboczi E J.Simulation studies of the effects of mineral admixtures on the cement paste-aggregate interfacial zone [J]. ACI Materials Journal,1991,88(5):518-529.
[11] Langan B W,Ward M A.Effect of silica fume and fly ash on heat of hydration of Portland cement [J]. Cement and Concrete Research,2002,32(7):1045.
[12] Powers T C,Brownyard T L.Studies of the physical properties of hardened Portland cement paste(nine parts)[J]. Journal of American Concrete Institute,1947,43(2):101.

相似文献/References:

[1]钱春香,黄蓓,董华.集料尺寸和形状及掺合料对混凝土界面的影响[J].东南大学学报(自然科学版),2009,39(4):840.[doi:10.3969/j.issn.1001-0505.2009.04.037]
 Qian Chunxiang,Huang Bei,Dong Hua.Influence of size and shape of aggregate and mineral admixture on interface of concrete[J].Journal of Southeast University (Natural Science Edition),2009,39(1):840.[doi:10.3969/j.issn.1001-0505.2009.04.037]
[2]蒋亚清,高建明,许仲梓.环境友好型PFA膨胀剂[J].东南大学学报(自然科学版),2008,38(2):351.[doi:10.3969/j.issn.1001-0505.2008.02.033]
 Jiang Yaqing,Gao Jianming,Xu Zhongzi.Investigation on environmentally friendly PFA based expansive agent[J].Journal of Southeast University (Natural Science Edition),2008,38(1):351.[doi:10.3969/j.issn.1001-0505.2008.02.033]
[3]秦鸿根,潘钢华,孙伟.掺粉煤灰高性能桥用混凝土变形性能研究[J].东南大学学报(自然科学版),2002,32(5):779.[doi:10.3969/j.issn.1001-0505.2002.05.022]
 Qin Honggen,Pan Ganghua,Sun Wei.Study on the deformation properties of the high performance concrete with fly ash used in bridge[J].Journal of Southeast University (Natural Science Edition),2002,32(1):779.[doi:10.3969/j.issn.1001-0505.2002.05.022]
[4]查甫生,刘松玉,杜延军.石灰-粉煤灰改良膨胀土试验[J].东南大学学报(自然科学版),2007,37(2):339.[doi:10.3969/j.issn.1001-0505.2007.02.031]
 Zha Fusheng,Liu Songyu,Du Yanjun.Experiment on improvement of expansive clays with lime-fly ash[J].Journal of Southeast University (Natural Science Edition),2007,37(1):339.[doi:10.3969/j.issn.1001-0505.2007.02.031]
[5]郭丽萍,孙伟,郑克仁,等.磨细矿渣和粉煤灰掺量对混凝土弯曲疲劳性能的影响[J].东南大学学报(自然科学版),2006,36(1):124.[doi:10.3969/j.issn.1001-0505.2006.01.025]
 Guo Liping,Sun Wei,Zheng Keren,et al.Influence of dosages of ground granulated blast-furnace slag and fly ash on flexural fatigue performance of concrete[J].Journal of Southeast University (Natural Science Edition),2006,36(1):124.[doi:10.3969/j.issn.1001-0505.2006.01.025]
[6]石名磊,邓学钧,江瑞龄,等.加筋粉煤灰高支挡结构有限元分析[J].东南大学学报(自然科学版),1998,28(6):123.[doi:10.3969/j.issn.1001-0505.1998.06.024]
 Shi Minglei,Deng Xuejun,Jing Ruiling,et al.Finite Element Analysis for Reinforced Flyash Retaining Structure[J].Journal of Southeast University (Natural Science Edition),1998,28(1):123.[doi:10.3969/j.issn.1001-0505.1998.06.024]
[7]顾文钧,俞建荣.水泥混凝土与沥青混凝土复合式路面温度梯度分析[J].东南大学学报(自然科学版),1997,27(3):23.[doi:10.3969/j.issn.1001-0505.1997.03.005]
 Thermal Gradient Analysis of Cement Concrete and Asphalt Concrete Composite Pavement Gu Wenjun Yu Jianrong[J].Journal of Southeast University (Natural Science Edition),1997,27(1):23.[doi:10.3969/j.issn.1001-0505.1997.03.005]
[8]章春梅.碳酸钙对水泥熟料矿物水化及显微结构特征的影响[J].东南大学学报(自然科学版),1988,18(1):114.[doi:10.3969/j.issn.1001-0505.1988.01.013]
 Zhang Chunmei (Department of Civil Engineering).Influence of Calcium Carbonate on Hydration and Microstructural Characteristics of Cement Clinker Minerals[J].Journal of Southeast University (Natural Science Edition),1988,18(1):114.[doi:10.3969/j.issn.1001-0505.1988.01.013]
[9]陈蕾,刘松玉,杜延军,等.水泥固化含铅污染土无侧限抗压强度预测方法[J].东南大学学报(自然科学版),2010,40(3):609.[doi:10.3969/j.issn.1001-0505.2010.03.033]
 Chen Lei,Liu Songyu,Du Yanjun,et al.Unconfined compressive strength prediction of cement solidified/stabilized lead-contaminated soils[J].Journal of Southeast University (Natural Science Edition),2010,40(1):609.[doi:10.3969/j.issn.1001-0505.2010.03.033]
[10]徐文,钱春香,庄园.粉煤灰对混凝土AAR有效碱的影响及机理[J].东南大学学报(自然科学版),2010,40(2):380.[doi:10.3969/j.issn.1001-0505.2010.02.031]
 Xu Wen,Qian Chunxiang,Zhuang Yuan.Effect of fly ash on available alkali for AAR and its mechanism in concrete[J].Journal of Southeast University (Natural Science Edition),2010,40(1):380.[doi:10.3969/j.issn.1001-0505.2010.02.031]

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金资助项目(50278018)、南京水利科学研究院开放流动研究基金资助项目(Yk90508)、教育部重点实验室开放基金资助项目(SYSJJ2004-02).
作者简介: 张云升(1974—),男,博士,讲师, zhangys279@163.com.
更新日期/Last Update: 2006-01-20