[1]陈淑燕,王炜,李文勇.实时交通数据的噪声识别和消噪方法[J].东南大学学报(自然科学版),2006,36(2):322-325.[doi:10.3969/j.issn.1001-0505.2006.02.030]
 Chen Shuyan,Wang Wei,Li Wenyong.Noise recognition and noise reduction of real-time traffic data[J].Journal of Southeast University (Natural Science Edition),2006,36(2):322-325.[doi:10.3969/j.issn.1001-0505.2006.02.030]
点击复制

实时交通数据的噪声识别和消噪方法()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
36
期数:
2006年第2期
页码:
322-325
栏目:
交通运输工程
出版日期:
2006-03-20

文章信息/Info

Title:
Noise recognition and noise reduction of real-time traffic data
作者:
陈淑燕12 王炜1 李文勇1
1 东南大学交通学院, 南京 210096; 2 南京师范大学江苏省光电重点实验室, 南京 210097
Author(s):
Chen Shuyan12 Wang Wei1 Li Wenyong1
1 College of Transportation, Southeast University, Nanjing 210096, China
2 Optoelectronics Key Laboratory of Jiangsu Province, Nanjing Normal University, Nanjing 210097, China
关键词:
噪声识别 消噪 交通数据 小波分析 免疫算法
Keywords:
noise recognition noise reduction traffic measure data wavelet analysis immune algorithm
分类号:
U491.1
DOI:
10.3969/j.issn.1001-0505.2006.02.030
摘要:
以常用的交通数据——交通量时间序列的实测数据为例,给出多个噪声识别及消噪预处理的实验结果.为提高建模的准确度,采用模糊减法聚类对交叉口实测交通量进行噪声识别.对实测交通量采用奇异值分解的滤波方法进行除噪预处理,并通过训练径向基函数网络进行预测.与数据未经滤波直接训练网络相比,预测结果的平均绝对相对误差降低了3.31%.用小波变换对交通量数据进行消噪处理,即通过多分辨率的小波分解和重构来实现消噪.实验表明,若对原始交通量时间序列消噪后再建立预测模型,将获得更好的预测结果,这说明研究的噪声识别和消噪方法的可行性和有效性.
Abstract:
Taking noise recognition and noise reduction of traffic volume time series which are commonly used traffic data as example, several experimental results are illustrated. In order to improve the accuracy of modeling, fuzzy subtraction clustering is employed to recognize the noise data hidden in traffic volume time series gathered in intersection; De-noise filter method based on single value decomposition is applied to preprocess traffic volume time series, and a radical basic function neural network is trained for prediction. The mean absolute relative error of the prediction is reduced by 3.31% compared to that of network trained with raw data without filter. Wavelet transform, i.e. multi-resolution decomposition and reconstruction is also used to reduce noise. These experiments indicate that the prediction model built with traffic volume time series after noise reduction can yield better results. It proves the feasibility and validity of above mentioned approaches.

参考文献/References:

[1] Han Jiawei,Kamber Micheline.Data mining:concepts and techniques[M].Morgan:Morgan Kaufmann Publishers,2001:52-103.
[2] 吴旭光.系统建模和参数估计——理论与算法[M].北京:机械工业出版社,2002:94-111.
[3] 裴玉龙,马骥.实时交通数据的筛选与恢复研究[J].土木工程学报,2003,36(7):78-83.
  Pei Yulong,Ma Ji.Real-time traffic data screening and reconstruction[J].China Civil Engineering Journal,2003,36(7):78-83.(in Chinese)
[4] 简相超,郑君里.混沌和神经网络相结合预测短波通信频率参数[J].清华大学学报:自然科学版,2001,41(1):16-19.
  Jian Xiangchao,Zheng Junli.Prediction of frequency parameters in short wave radio communications based on chaos and neural networks [J].Journal of Tsinghua University:Sci & Tech,2001,41(1):16-19.(in Chinese)
[5] Fang Haitao,Huang Deshuang.Noise reduction in lidar signal based on discrete wavelet transform [J].Optics Communications,2004,38(5):67-76.
[6] Ishida Y,Adachi N.Active noise control by an immune algorithm:adaptation in immune system as an evolution[C] //Proc IECE 96.Nagoya,Japan,1996:150-153.
[7] Ishida Y,Adachi N.An immune algorithm for multi-agent:application to adaptive noise neutralization[C] //Proc IROS 96.Osaka,1996:1739-1746.
[8] Boll S F.Suppression of acoustic noise in speech using spectral subtraction [J]. IEEE Transactions Acoustics,Speech and Signal Processing,1979,27(2):113-120.
[9] Gruden Stanislav,Zajc Baldomir.Using spectral subtraction for suppression of noise in speech signals with analog integrated circuits[J].Analog Integrated Circuits and Signal Processing,1999,18(2,3):195-207.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金资助项目(50378016)、江苏省教委自然科学基金资助项目(05KJB520056).
作者简介: 陈淑燕(1967—),女,博士,副教授; 王炜(联系人),男,博士,教授,博士生导师,wangwei@seu.edu.cn.
更新日期/Last Update: 2006-03-20