[1]黄超,张训峰.Rn上的基于Checkerboard格点的不可分双正交小波[J].东南大学学报(自然科学版),2006,36(2):335-340.[doi:10.3969/j.issn.1001-0505.2006.02.033]
 Huang Chao,Zhang Xunfeng.Nonseparable biorthogonal wavelets based on checkerboard lattice in Rn[J].Journal of Southeast University (Natural Science Edition),2006,36(2):335-340.[doi:10.3969/j.issn.1001-0505.2006.02.033]
点击复制

Rn上的基于Checkerboard格点的不可分双正交小波()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
36
期数:
2006年第2期
页码:
335-340
栏目:
信息与通信工程
出版日期:
2006-03-20

文章信息/Info

Title:
Nonseparable biorthogonal wavelets based on checkerboard lattice in Rn
作者:
黄超1 张训峰2
1 东南大学经济管理学院, 南京 210096; 2 国防科学技术大学理学院, 长沙 410073
Author(s):
Huang Chao1 Zhang Xunfeng2
1 College of Economics and Management, Southeast University, Nanjing 210096, China
2 School of Science, National University of Defense Technology, Changsha 410073, China
关键词:
不可分双正交小波 Checkerboard 格点 多维信号处理 CBC算法
Keywords:
nonseparable biorthogonal wavelets checkerboard lattice multi-dimension signal processing CBC algorithm
分类号:
TN919.81
DOI:
10.3969/j.issn.1001-0505.2006.02.033
摘要:
研究了一类基于Checkerboard格点的不可分双正交小波,并证明了其尺度函数逼近阶与光滑性的上界.在此基础上提出了此类小波的构造算法. 理论分析表明,使用该算法构造的小波具有很好的对称性、光滑性以及对多维信号采样的视觉优势.此外该算法能够构造具有任意给定消失矩的小波,并且其小波滤波器具有有理系数,这在多维信号处理中具有重要意义. 实例分析也验证了构造算法的有效性和上述结论.
Abstract:
Nonseparable biorthogonal wavelets based on Checkerboard lattice is studied, and the upper bounds of approximation order and smoothness order of the corresponding scaling function are also proved. Based on it the construction algorithm of such wavelets is brought forward. Results of theoretical analysis show that the wavelets constructed by this algorithm have good symmetry, smoothness and vision advantages in multi-dimension signal sampling. Moreover, the wavelets with arbitrary vanishing moments can be constructed by using this algorithm and the filters have rational coefficients, which is very important in multi-dimension signal processing. The practical example validates the effectiveness of the construction algorithm and above conclusions.

参考文献/References:

[1] Daubechies I.Ten lectures on wavelets[M].Vermont:Capital City Press,1992:1-5.
[2] 赵慧,侯建荣,施伯乐.随机非平稳时间序列数据的相似性研究[J].软件学报,2004,15(5):633-640.
  Zhao Hui,Hou Jianrong,Shi Bole.Research on similarity of stochastic non-statinonary time series based on wavelet method [J].Journal of Software,2004,15(5):633-640.(in Chinese)
[3] Kovacˇevic J,Vetterli M.Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for Rn[J].IEEE Trans Info Theory,1992,38(2):533-555.
[4] Kovacˇevic J,Vetterli M.Nonseperable two-and three-dimensional wavelets [J].IEEE Transactions on Signal Processing,1995,43(5):1269-1273.
[5] Han B,Jia R Q.Quincunx fundamental refinable functions and quincunx biorthogonal wavelets [J].Math Comp,2002,71(237):165-196.
[6] Kovacˇevic J,Sweldens W.Wavelet families of increasing order in arbitrary dimensions [J].IEEE Transactions on Image Processing,2000,9(3):480-496.
[7] Han B,Jia R Q.Multivariate refinement equations and convergence of subdivision schemes [J].SIAM J Math Anal,1998,29(5):1177-1199.
[8] Han B,Jia R Q.Optimal interpolatory subdivision schemes in multidimensional spaces [J].SIAM Journal on Numerical Analysis,1998,36(1):105-124.
[9] Jia R Q.Approximation properties of multivariate wavelets [J].Math Comp,1998,67(222):647-665.
[10] Han B.Analysis and construction of optimal multivariate biorthogonal wavelets with compact support [J]. SIAM Journal on Mathematical Analysis,2000,31(2):274-304.

备注/Memo

备注/Memo:
作者简介: 黄超(1977—), 男, 博士, 讲师, huangchao@seu.edu.cn.
更新日期/Last Update: 2006-03-20