[1]陈敏,汤文成,王楠,等.基于有限元反算和粒子群优化算法杨氏模量重构[J].东南大学学报(自然科学版),2006,36(3):402-406.[doi:10.3969/j.issn.1001-0505.2006.03.014]
 Chen Min,Tang Wencheng,Wang Nan,et al.IFEM and PSO algorithms for Young’s modulus reconstruction[J].Journal of Southeast University (Natural Science Edition),2006,36(3):402-406.[doi:10.3969/j.issn.1001-0505.2006.03.014]
点击复制

基于有限元反算和粒子群优化算法杨氏模量重构()
分享到:

《东南大学学报(自然科学版)》[ISSN:1001-0505/CN:32-1178/N]

卷:
36
期数:
2006年第3期
页码:
402-406
栏目:
机械工程
出版日期:
2006-05-20

文章信息/Info

Title:
IFEM and PSO algorithms for Young’s modulus reconstruction
作者:
陈敏 汤文成 王楠 蔡传宝
东南大学机械工程学院,南京 210096
Author(s):
Chen Min Tang Wencheng Wang Nan Cai Chuanbao
College of Mechanical Engineering, Southeast University, Nanjing 210096, China
关键词:
杨氏模量 有限元反算法 改进粒子群优化算法 生物组织
Keywords:
Young’s modulus inverse finite element method improved particle swarm optimizer biological tissues
分类号:
TH123
DOI:
10.3969/j.issn.1001-0505.2006.03.014
摘要:
提出一种基于边缘提取技术和图像配准技术的杨氏模量定量计算方法.在已知取生物组织边缘位移及病变位置的基础上,假设力的分布、构造单元系统、运用有限元反演方法(IFEM)多次迭代,计算出组织的杨氏模量.在此基础上估计全局杨氏模量范围,采用改进粒子群优化算法(PSO),计算出生物组织整体的杨氏模量分布.并通过计算机模拟实验验证了算法的可行性,讨论了在边界位移存在误差的情况下,计算结果的准确性; 改进PSO算法在较大范围内搜索,总能向理论值靠近,得到可行解.
Abstract:
To get the quantitative value of the abnormal biological tissues, an inverse algorithm about Young’s modulus based on boundary extraction and image registration technology is proposed. With the known displacements of boundary tissues and the force distribution, the Young’s modulus is calculated by constructing the unit system and using the inverse finite element method(IFEM). Then a tough range of modulus for the whole tissue is estimated referring the value obtained before. The improved particle swarm optimizer(PSO)method is adopted to calculate the whole Yong’s modulus distribution. The repetitious numerical simulation shows that errors in boundary displacement are not very sensitive to the estimation of next process; a final feasible solution is obtained by the improved PSO method which is close to the theoretical values during searching in an extensive range.

参考文献/References:

[1] Catheline S,Thomas J L,Wu F,et al.Diffraction field of a low frequency vibrator in soft tissues using transient elastography [J]. Ultrasonics,Ferroelectrics and Frequency Control,1999,46(4):1013-1019.
[2] Sandrin L,Tanter M,Catheline S,et al.Shear modulus imaging with 2-D transient elastography [J].Ultrasonics,Ferroelectrics and Frequency Control,2002,49(4):426-435.
[3] Dutt Vinayaka1,Kinnick Randall R,Muthupillai Rajaa,et al.Acoustic shear-wave imaging using echo ultrasound compared to magnetic resonance elastography [J]. Ultrasound in Medicine and Biology,2000,26(3):397-403.
[4] O’Donnell M,Skovoroda A R,Shapo B M,et al.Internal displacement and strain imaging using ultrasonic speckle tracking [J].Ultrasonics,Ferroelectrics and Frequency Control,1994,41(3):314-325.
[5] Skovoroda A R,Emelianov S Y,O’Donnell M.Tissue elasticity reconstruction based on ultrasonic displacement and strain images[J].Ultrasonics,Ferroelectrics and Frequency Control,1995,42(4):747-765.
[6] Kallel F,Bertrand M.Tissue elasticity reconstruction using linear perturbation method [J].IEEE Transactions on Medical Imaging,1996,15(3):299-313.
[7] 贾瑞玉,许岚兵,汪炳权.含病变肝脏CT图象边界轮廓线的自动提取[J].安徽大学学报:自然科学版,1998,22(1):56-59.
  Jia Ruiyu,Xu Lanbing,Wang Bingquan.The edges extraction of CT images of liver which contain illness[J].Journal of Anhui University Natural Science Edition,1998,22(1):56-59.(in Chinese)
[8] Wu Jian,Ding Hui,Wang Guangzhi,et al.The frequency features and application of edge detection differential operators in medical image[J].J Biomed Eng,2005,22(1):82-85.
[9] 王合,庄天戈,蒋大宗.医学图像中模糊边界的提取[J].中国生物医学工程学报,2001,20(2):138-142.
  Wang He,Zhuang Tiange,Jiang Dazong.Extraction of fuzzy boundary in medical images[J]. Chinese Journal of Biomedical Engineering,2001,20(2):138-142.(in Chinese)
[10] Zhu Yanning,Hall Timothy J,Jiang Jingfeng.A finite-element approach for Young’s modulus reconstruction [J]. IEEE Transactions on Medical Imaging, 2003,22(7):890-901.
[11] Liew Haw Ling,Pinsky Peter M.Recovery of shear modulus in elastography using an djoint method with B-spline representation [J]. Finite Elements in Analysis and Design,2005,41(7,8):778-799.
[12] 郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用[M].北京:机械工业出版社,2004:17-26.
[13] Eberhart R,Kennedy J.A new optimizer using particle swarm theory [C] //Proceedings of the Sixth International Symposium on Micro Machine and Human Science,Nagova,Japan,1995:39-43.
[14] Shi Y,Eberhart R.A modified particle swarm optimizer [C] //IEEE World Congress on Computational Intelligence.Anchorage,Alaska,USA,1998:69-73.

备注/Memo

备注/Memo:
作者简介: 陈敏(1981—),女,博士生; 汤文成(联系人),男,博士,教授,博士生导师,tangwc@seu.edu.cn.
更新日期/Last Update: 2006-05-20